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Abstract
This paper presents an evaluation of the design decisions made in

four state-of-the-art constraint solvers; Choco, ECLiPSe, Gecode, and
Minion. To assess the impact of design decisions, instances of the five
problem classes n-Queens, Golomb Ruler, Magic Square, Social Golfers,
and Balanced Incomplete Block Design are modelled and solved with each
solver. The results of the experiments are not meant to give an indication
of the performance of a solver, but rather investigate what influence the
choice of algorithms and data structures has.

The analysis of the impact of the design decisions focuses on the differ-
ent ways of memory management, behaviour with increasing problem size,
and specialised algorithms for specific types of variables. It also briefly
considers other, less significant decisions.

1 Introduction
Contemporary constraint solvers are very complex software systems. Each one
of the many available today has its own characteristics, its own design decisions
that the implementers made, and its own philosophy. The traits of a solver
which will affect the performance for a particular problem class or instance
often cannot be determined easily. Picking a particular solver is therefore a
difficult task which requires specialist knowledge about each solver and is likely
to have a significant impact on performance. On top of that, each solver has
different ways of modelling problems. Not only do users need experience with
a particular solver to model a problem in a way that enables it to be solved
efficiently, but it is also hard to objectively compare solvers.

This paper studies a small selection of constraint solvers and assesses their
performance on problem models which were made as similar as possible.

2 Background
The first constraint solvers were implemented as constraint logic programming
environments in logic programming languages such as Prolog in the early 1980s.
The logic programming paradigm lends itself naturally to solving constraint
problems because things like depth-first backtracking search and nondetermin-
ism are already built into the host language. Related ideas also arose in opera-
tions and artificial intelligence research.
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Notable developments of that time include extensions to Prolog and the
CHIP constraint programming system.

Starting in the 1990s, constraint programming found its way to procedural
and object-oriented languages, most notably C++. ILog Solver pioneered this
area. It became apparent that it would be beneficial to separate the solving of
constraint problems into two phases; modelling the problem and programming
search.

Since then, constraint solvers have improved significantly in terms of perfor-
mance as well as in terms of ease of use.

For more detailed information on the history and background of each solver,
see e.g. [8].

3 Surveyed constraint solvers
The constraint solvers chosen for this paper are Choco [12], version 2.0.0.3,
ECLiPSe [1], version 6.0 42, Gecode [10], version 2.2.0, and Minion [2][5], version
0.7. The solvers were chosen because all of them are currently under active
development. Furthermore they are Open Source; implementation details not
described in papers or the manual can be investigated by looking at the source
code.

Table 1 presents a brief summary of the solvers and their basic characteris-
tics.

solver language year modelling
Choco Java 1999 library
ECLiPSe C/Prolog 1990 library
Gecode C++ 2005 library
Minion C++ 2006 input file

Table 1: Summary of the characteristics of the investigated solvers.

Choco Choco was initially developed in the CLAIRE programming language
as a national effort of French researchers for an open constraint solver for
teaching and research purposes. Since then, it has been reimplemented
in the Java programming language and gone through a series of other
changes. Version 2 is a major refactoring to provide a better separation
between modelling and solving a problem, as well as performance improve-
ments.

ECLiPSe ECLiPSe is one of the oldest constraint programming environment
which is still used and in active development. It was initially developed at
the European Computer-Industry Research Centre in Munich, and then at
IC-Parc, Imperial College in London until the end of 2005, when it became
Open Source. Being implemented in Prolog, its intrinsic performance is
not as high as comparable systems implemented in other programming
languages, but it is easier to specify problems and implement new algo-
rithms.

Gecode “Gecode is an open, free, portable, accessible, and efficient environ-
ment for developing constraint-based systems and applications in research,
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industry, and education. Particularly important for its design is simplic-
ity and accessibility. Simplicity has been the key reason why Gecode
is efficient and successfully exploits today’s commodity parallel hardware.
Accessibility is due to its complete reference documentation, growing tuto-
rial documentation, and academic publications in conferences and journals
presenting key design decisions and techniques.”1

Minion Minion was implemented to be a solver which only requires an input
file to run and no written code. This way the solver could be made fast
by not being extensible or programmable and fixing the design decisions.
It also makes it easier to use because users do not have to write code.

4 Surveyed constraint problems
The classes of constraint problems investigated are the n-Queens, Golomb Ruler,
Magic Square, Social Golfers, and Balanced Incomplete Block Design problems.
The characteristics of the problems are [4]:-

n-Queens Place n queens on an n × n chessboard such that no queen is at-
tacking another queen.

Golomb Ruler (CSPLib problem 6)
A Golomb ruler may be defined as a set of m integers 0 = a1 < a2 < . . . <

am such that the m(m−1)
2 differences aj − ai, 1 ≤ i < j ≤ m are distinct.

Such a ruler is said to contain m marks and is of length am. The length
is to be minimised.

Magic Square (CSPLib problem 19)
An order n magic square is a n×n matrix containing the numbers 1 to n2,
with each row, column and main diagonal equal the same sum n(n2+1)

2 .

Social Golfers (CSPLib problem 10)
In a golf club where m groups of n golfers play over p weeks, schedule
the groups such that no golfer plays in the same group as any other golfer
twice.

Balanced Incomplete Block Design (CSPLib problem 28)
A Balanced Incomplete Block Design (BIBD) is defined as an arrangement
of v distinct objects into b blocks such that each block contains exactly k
distinct objects, each object occurs in exactly r different blocks, and every
two distinct objects occur together in exactly λ blocks. The parameters b
and r can be derived from the other ones.

The choices cover a variety of different constraint problems, such as optimisa-
tion problems and problems usually modelled with integer and Boolean variable
domains. The models involve binary constraints as well as global constraints.

For each problem class, several different instances were chosen. This choice
was purely based on the CPU time of the models to be able to compare both
long and short runs. The instances selected were:-

1Personal communication with Christian Schulte.
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n-Queens n = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29}

Golomb Ruler m = {9, 10, 11, 12, 13}

Magic Square n = {4, 5, 6}

Social Golfers 〈p,m, n〉 = {〈2, 4, 4〉 , 〈2, 5, 4〉 , 〈2, 6, 4〉 , 〈2, 7, 4〉 , 〈2, 8, 4〉 ,
〈2, 9, 4〉 , 〈2, 10, 4〉}

BIBD 〈v, k, λ〉 = {〈7, 3, 10〉 , 〈7, 3, 20〉 , 〈7, 3, 30〉 , 〈7, 3, 40〉 , 〈7, 3, 50〉 , 〈7, 3, 60〉 ,
〈7, 3, 70〉}

There is insufficient space to reproduce the models for all the problems;
instead, a high-level description of the model for each problem class will be
given.

The models were derived from the examples included with the distributions
of the solvers. For some solvers and some problems the example model was
simply adapted to match the models for the other solvers, in other cases the
problem was modelled from scratch.

n-Queens The problem was modelled with n variables, one for each queen, and
one auxiliary variable for each pair of rows holding the difference of the
column positions of queens in those rows to enforce the constraint that no
two queens can be on the same diagonal. An alldifferent constraint was
enforced over the n decision variables.

Golomb Ruler The Golomb Ruler model had m variables, one for each tick,
and one auxiliary variable for each pair of ticks to hold the difference
between them. Additional constraints determined the value of the first
tick to be 0 and enforced an increasing monotonic ordering on the ticks.
An alldifferent constraint was enforced over the auxiliary variables holding
the differences between the ticks. The optimisation constraint minimised
the value of the last tick, which is equivalent to the length am.

Magic Square There were n × n variables for the cells of the magic square.
The constraints enforced all those variables to be different and all rows,
columns, and diagonals to sum to the magic sum. Additionally, four con-
straints were introduced to break some of the symmetries in the problem;
the number in the top left square has to be less than or equal to the num-
bers in the other corners of the square and the top right number has to
be less than or equal to the bottom left number.

Social Golfers The model of the Social Golfers problem used a p×m× (n ·m)
matrix of decision variables. The first dimension represented the weeks,
the second one the groups, and the third one the players by group. The
constraints imposed were that each player plays exactly once per week,
the sum of the players in each group is equal to the number of players per
group specified, and each pair of players meets at most once. For the last
constraint, one auxiliary variable for each pair of players by group times
weeks times groups was introduced. Additional ordering constraints were
introduced to break the symmetries among weeks, groups, and players.
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Balanced Incomplete Block Design The BIBD model introduced a matrix
of v × b decision variables. The rows were constrained to sum to r, the
columns to k, and the scalar product between each pair of rows was con-
strained to equal λ. For the last constraint, one auxiliary constraint per
pair of rows times b was introduced. To break some of the symmetries, or-
dering constraints were put on each pair of rows and each pair of columns.

All models except the BIBD and Social Golfers ones used variables with
integer domains. The models of BIBD and Social Golfers used Boolean variables
in the solvers which provide specialised Boolean variables; Choco, Gecode, and
Minion. For all models, static variable and value ordering heuristics were used.
The solutions the different solvers found for each problem were the same.

Table 2 lists the number of variables, their domains, and constraints for each
problem instance. If the domains of the auxiliary variables are different from
the domains of the main variables, they are given in parentheses. Minion does
not provide a sum equals constraint; it can however be emulated by combining a
sum less than and sum greater than constraint. This results in a higher number
of constraints for Minion; it is given in parentheses.

The purpose of this paper is to compare the solvers on equivalent models
to be able to assess how the design decisions they have made affected their
performance. The models of the problems are in no case the optimal model
for the particular solver or the particular problem. The results cannot be seen
as providing a performance comparison of the solvers in general, as for such a
comparison the models would have to be tailored to each solver to achieve the
best performance. For such a comparison, see [7].

This paper focuses on performance in terms of processor time; other mea-
sures such as wall clock time and memory requirements are not evaluated.

4.1 Amount of search
The amount of search each solver does on each problem instance is roughly the
same. This was ensured by comparing the node counts for each instance for the
solvers which provide node counts, visually inspecting the search tree for solvers
which provide visualisation tools, and manually comparing the decisions made
at each node of the search tree for smaller instances.

The node count numbers are not reported here because because they are only
meaningful in the context of also using other means to compare the amount of
search being done.

5 Results
The following figures show the performance of the solvers for each problem class
and instance.

All experiments were conducted on an 8-core Intel Xeon 2.66 GHz with 16
GB of memory running CentOS Linux 5. The CPU time was measured with
the time command-line utility. The numbers reported as CPU time are the sum
of user and system time. The median of five runs was taken. The coefficient
of variation2 was in general less than 10%. Instances where it was larger are

2The coefficient of variation is the standard deviation divided by the mean.
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problem instance variables domains constraints
n-Queens 20 210 {0..19}

({−19..19})
571 (761)

21 231 {0..20}
({−20..20})

631 (841)

22 253 {0..21}
({−21..21})

694 (925)

23 276 {0..22}
({−22..22})

760 (1013)

24 300 {0..23}
({−23..23})

829 (1105)

25 325 {0..24}
({−24..24})

901 (1201)

26 351 {0..25}
({−25..25})

976 (1301)

27 378 {0..26}
({−26..26})

1054 (1405)

28 406 {0..27}
({−27..27})

1135 (1513)

29 435 {0..28}
({−28..28})

1219 (1625)

Golomb Ruler 9 45 {0..81} 46 (82)
10 55 {0..100} 56 (101)
11 66 {0..121} 67 (122)
12 78 {0..144} 79 (145)
13 91 {0..169} 92 (170)

Magic Square 4 16 {1..16} 15 (25)
5 25 {1..25} 17 (29)
6 36 {1..36} 19 (33)

Social Golfers 2,4,4 1088 {0..1} 1133 (1293)
2,5,4 2100 {0..1} 2161 (2401)
2,6,4 3600 {0..1} 3679 (4015)
2,7,4 5684 {0..1} 5783 (6231)
2,8,4 8448 {0..1} 8569 (9145)
2,9,4 11988 {0..1} 12133 (12853)
2,10,4 16400 {0..1} 16571 (17451)

BIBD 7,3,10 1960 {0..1} 1643 (1741)
7,3,20 3920 {0..1} 3253 (3421)
7,3,30 5880 {0..1} 4863 (5101)
7,3,40 7840 {0..1} 6473 (6781)
7,3,50 9800 {0..1} 8083 (8461)
7,3,60 11760 {0..1} 9693 (10141)
7,3,70 13720 {0..1} 11303 (11821)

Table 2: Number of variables and constraints for the investigated problems.
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discussed below.
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Figure 1: CPU time comparison for n-Queens.

The figures show that for the Magic Square problem models, Gecode finds
the solution first. For the Golomb Ruler problem model, Gecode and Minion
show a very similar performance. For the other problem models, Minion was
fastest.

Figure 6 shows the median number of nodes per second Minion did for each
problem class and instance. A high number of nodes per second indicates that
the amount of work done at each node – i.e. propagation of changes – is small and
more search than propagation is done. For the Social Golfers and the Balanced
Incomplete Block Design problems the number of nodes per second decreases
with increasing problem size after a certain threshold. This indicates the point
where managing backtrack memory at each node becomes so expensive that
instantiating new nodes has a significant cost.

On the instances of the n-Queens problem, the Magic Square problem, and
the Golomb Ruler problem more propagation and less search compared to the
other problems is performed. Due to the larger domains and fewer variables,
the solvers spend a larger ratio of the total CPU time propagating changes and
revising domains than instantiating new search nodes in the tree and restoring
backtrack state.

Figure 1 shows that the relative differences in CPU time between the solvers
stays approximately the same across different instances, save for very small
problems where the setup cost dominates the CPU time (cf. section 5.2). The
same effect is even stronger for the Golomb Ruler problem (figure 2) where the
total CPU times are larger. The gradients of the lines for the different solvers
are strikingly similar.

Figure 3 suggests a slightly different behaviour for the Magic Square problem;
however, there are not enough data points to draw a definitive conclusion. This
problem was only run up to instances of size 6 because instances of size 7 took
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Figure 2: CPU time comparison for Golomb Ruler.
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Figure 3: CPU time comparison for Magic Square.
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Figure 4: CPU time comparison for Social Golfers.
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Figure 5: CPU time comparison for Balanced Incomplete Block Design.
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too long.
These results suggest that there is no intrinsic advantage of one implemen-

tation of propagation algorithms and data structures over another except for
a constant overhead caused by the overall implementation. They also suggest
that for problems with large variable domains the cost of propagation at each
node dominates the cost of instantiating new nodes and restoring backtrack
state regardless of the implementation of backtrack memory.

The coefficient of variation between the five runs for the 2,10,4 Social Golfers
instance for Gecode was about 20%. Even considering the large variation, the
key point – ECLiPSe performs better than Gecode, which is roughly the same
as Choco – remains valid.

It is obvious from all figures that the performance differences between differ-
ent solvers can easily be several orders of magnitude. The overall performance
of a solver is affected by a variety of factors. One of them is the programming
language the solver is implemented in; others are the design decisions made
when implementing it. The following sections each look at one of these design
issues and assess its influence qualitatively and quantitatively. There are de-
sign decisions which are not dealt with here; however we believe that the ones
addressed in this paper are the most influential ones.

5.1 Specialised variable implementations
The Choco, Gecode, and Minion solvers provide specialised variable implemen-
tations for Boolean variables. The Social Golfers and BIBD problems have been
modelled with Boolean variables and integer variables with domains {0..1} to
assess the impact of the specialised implementation.

ECLiPSe provides no variable types and uses floating point arithmetic for
everything, which gives it an inherent disadvantage over the other solvers.

Figure 7 shows the relative CPU time the model with integer variables takes
compared to the model with Boolean variables. The CPU time is shown in
relation with the number of backtracks because the correlation between the CPU
time and the number of backtracks is stronger than the correlation between the
CPU time and the number of variables [11].

The results were compared with the Wilcoxon signed-rank test [13]. The dif-
ferences for both problems for Gecode and Minion are statistically significant at
the 0.05 level; however the differences for Choco are not statistically significant.

As the figure demonstrates, the specialised implementation for Boolean vari-
ables is most effective for Minion, where the improvements over the model with
integer variables are up to more than 7 times. For Gecode the improvements in
terms of CPU time are also up to approximately 100%. The specialised imple-
mentation in Choco does not achieve any significant performance improvement
at all; the differences are just random noise.

The results also show that for Minion the improvement of the Boolean model
over the integer model increases as the number of backtracks increases whereas
for Gecode there is no such effect. For the smallest number of backtracks for
both the Social Golfers and the Balanced Incomplete Block Design problems,
the improvement for Choco and Gecode is larger than the improvement for
Minion.
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Figure 7: Relative CPU time of integer model compared to Boolean model.
Shapes denote solvers, crosshairs denote problem classes. Values
greater than 1 denote that the Boolean model is faster than the integer
model.

Minion provides a specialised implementation for the sum constraint, which
is used heavily in the Social Golfers and BIBD problems for variables with
Boolean domains. Gecode provides specialised Boolean implementations for all
constraints used in the models. Choco only provides a more efficient implemen-
tation of the domain for Boolean variables.

The management of backtrack memory in Minion is slightly different for
Boolean and integer variables; for Boolean variables no trailing but only copying
is performed while for integer variables some additional trailing occurs. To
assess the effects of the specialised constraint implementation and introduction
of trailing separately, the Minion source code was modified and trailing switched
off for integer variables for the experiments described above.

The experiments were repeated with the unmodified source code of Minion.
The results showed the same picture; only the improvement of the Boolean
model over the integer model was not as significant as trailing integer variables
improves the performance slightly.

The results show that providing specialised implementations for different
variable types can achieve considerate performance improvements. The per-
formance improvement can be significant, as shown by Gecode and especially
Minion. It even increases for Minion as more variables are involved in the global
constraints and the size of the search tree increases.

5.2 Setup costs and scaling
In all of the experiments except the Golomb Ruler problem, Gecode is the fastest
solver for the problem which takes least CPU time to solve. As the time required
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to solve the problem increases, its CPU time increases more in relative terms
than that of the other solvers such that it is not the fastest solver anymore.

Both Choco and ECLiPSe run in abstract machines which have to be set up
when the program starts. Minion reads an input file, parses it, and constructs
the problem to solve from that. The overhead incurred because of these issues
accounts for the differences in CPU time compared to Gecode for the small
problems. For the Golomb Ruler problem, the CPU time Gecode takes to solve
the smallest problem is equal to the time Minion takes. This is because the CPU
time required to solve this instance is large compared to the CPU required for
the smallest instances of the other problem classes – it takes roughly a second
whereas for other problem classes the smallest instance is solved in a fraction of
a second. The overhead Minion incurs by parsing the input file accounts only
for a small fraction of the total CPU time and therefore it is as fast as Gecode.

Figure 4 shows that for the Social Golfers problem, ECLiPSe scales better
than the other solvers with respect to the increase in CPU time with increasing
problem size. From the 2,7,4 instance, it is faster than Choco, and for the
largest instance it is faster than Gecode as well. Extrapolating past the end of
the graph, it is possible that for very large instances ECLiPSe could be faster
than Minion.

Figure 5 on the other hand shows a different picture. Here the relative
increase in CPU time ECLiPSe and Gecode require to solve the problem as it
becomes more difficult to solve is significantly larger than that of Choco and
Minion. For the 7,3,60 problem instance, Choco is faster than Gecode despite
being slower before.

Both graphs are strikingly similar when disregarding ECLiPSe. For both
problems, the relative distance between the lines for Choco and Minion stays
more or less the same, whereas Gecode is about the same as Minion for the
smallest problem and about the same as Choco for the largest problem.

Both the Social Golfers and BIBD problem classes have a large number of
variables and constraints. The key difference is that on instances of the Social
Golfers problem, more backtracks are performed (cf. table 3). This indicates
that the implementation of backtracking and restoration of previous state for
problems with many variables is implemented more efficiently in ECLiPSe than
in the other solvers.

The following sections look at memory management in more detail.

5.3 Memory management
Table 4 summarises the memory management approaches taken for the different
solvers.

The following sections are mostly concerned with the different ways of imple-
menting backtrack memory, as this is the most important memory management
decision to be made in a constraint problem solver.

5.3.1 Recomputation versus copying

Gecode provides parameters which can be given to the solver executable to
tune the ratio of copying vs. recomputation. The n-Queens problem, the Social
Golfers problem, and the Balanced Incomplete Block Design problem were rerun
with recomputation distances of 1 (full copying – the same behaviour as Minion),
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problem instance backtracks
n-Queens 20 5960

21 177
22 43783
23 389
24 7337
25 606
26 4922
27 6465
28 39467
29 18687

Social Golfers 2,4,4 398
2,5,4 3343
2,6,4 18497
2,7,4 48030
2,8,4 100201
2,9,4 209387
2,10,4 399498

BIBD 7,3,10 239
7,3,20 1579
7,3,30 5019
7,3,40 11559
7,3,50 22199
7,3,60 37939
7,3,70 59779

Table 3: Number of backtracks for ECLiPSe.

solver backtracking approach garbage collection
Choco trailing yes (Java)
ECLiPSe trailing yes (custom)
Gecode copying/recomputation no
Minion copying/trailing no

Table 4: Summary of memory management approaches.
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8 (the default), 16, and 32. The adaptive recomputation distance was left at
the default value of 2 [9].

The results were compared with the Kruskal-Wallis one-way analysis of vari-
ance test [6]. The differences are not statistically significant because of the large
variation among the CPU times for the problem instances; however when com-
paring the differences between doing a full copy at each node (recomputation
distance 1) and the other recomputation distances with the Wilcoxon test the
differences were statistically significant at the 0.05 level.
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Figure 8: CPU time of different levels of recomputation and copying over CPU
time of copying. Shapes denote problem classes, crosshairs denote
recomputation distances. Values less than 1 denote that copying and
recomputation is faster than copying at every node.

Figure 8 shows the results for all the problems and recomputation distances.
The CPU times of the runs with a recomputation distance > 1 are divided by the
CPU times for a recomputation distance of 1. Values larger than 1 mean that
doing a full copy at every node performs better than a recomputation distance
of > 1. Note that the default recomputation distance in Gecode is 8, i.e. the
results shown in figures 1, 4, and 5 are not the CPU times which the other CPU
times are divided by.

The CPU time is influenced by both the number of backtracks and the
number of variables; however for this comparison the correlation between CPU
time and number of backtracks was stronger than the correlation between CPU
time and number of variables.

For all instances and recomputation distances of the n-Queens problem,
making a full copy at every node of the search tree performs better than a
recomputation distance > 1. This suggests that for problems with only few
variables it is better to always copy. The performance improvement is only up
to about 22% though.

The Social Golfers and Balanced Incomplete Block Design problems show
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that for problems with many variables, it is cheaper not to copy at every node,
but to do some recomputation. The results show that the performance improve-
ment can be up to about 70% with recomputation. They also demonstrate that
the optimal recomputation distance increases as the number of backtracks in-
creases. For both the Social Golfers and the Balanced Incomplete Block Design,
the default recomputation distance of 8 performs best for all but the largest in-
stance of the respective problem, where the recomputation distance of 16 is
better.

Furthermore there appears to be a problem-specific threshold in terms of
number of backtracks which marks a change in the performance improvement
for copying at every node – before the threshold the improvement increases with
increasing number of backtracks, after the threshold it decreases.

Figure 4 for example shows that Minion performs better than Gecode despite
full copying and no recomputation. This is because Gecode and Minion use
different implementations of copying backtrack memory. Whereas Gecode keeps
a list of pointers to objects to be copied and traverses that list, Minion allocates
everything that needs to be restored when backtracking in a continuous memory
region and simply copies the whole region. The advantage of Gecode’s approach
is that a finer-grained control over the used memory is possible, but Minion’s
approach wins in terms of overhead when copying at every node.

Choco provides a facility to change the backtrack strategy to both recompu-
tation and copying as well; however not a combination of the two. Using only
recomputation performed worse than copying by several orders of magnitude
and is therefore not considered here.

5.3.2 Copying versus trailing

Choco allows to change the default backtrack strategy of trailing to copying.
The n-Queens, the Social Golfers, and the Balanced Incomplete Block Design
problems were rerun with copying instead of trailing for backtrack memory.

The results were compared with the Wilcoxon test. The differences are
statistically significant at the 0.01 level. The CPU times are shown in relation
to the number of backtracks because the correlation between the CPU time and
the number of backtracks is stronger than the correlation between the CPU time
and the number of variables.

Figure 9 shows the results. For all instances of all problems, trailing per-
forms better than copying. For the n-Queens problem the differences are only
up to about 20% because of the small number of variables (cf. table 2). The
results for the Social Golfers and the Balanced Incomplete Block Design prob-
lems show that the relative difference between trailing and copying backtrack
memory increases as the number of backtracks increases.

The results suggest that trailing backtrack memory performs better than
copying backtrack memory; especially with increasing number of backtracks
and variables. This is most likely limited to Choco though; Minion for example
uses a different implementation of copying backtrack memory which scales much
better with increasing number of variables and has less overhead – instead of
copying each variable domain individually, it only copies one contiguous memory
region.

In general the results show that for problems with many backtracks trail-
ing backtrack memory performs better than copying backtrack memory. The
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Figure 9: CPU time of trailing over CPU time of copying. Values less than 1
denote that trailing is faster than copying.

following section investigates this further.

5.3.3 Sensitivity to number of variables

To further assess the impact of the backtrack strategy on the overall performance
of the solvers, the n-Queens and the Social Golfers problems were remodelled
with more auxiliary Boolean variables. No additional constraints were imposed
on the variables to keep the amount of search the same. Table 5 summarises
the numbers of variables for the normal and for the extended model.

The increased number of variables should have no or little impact on per-
formance for solvers which use trailed memory for backtracking as they only
record the changes to variables and the additional variables are never changed.
The impact for solver which use other types of backtrack strategies should be
considerable. Any effects caused by the different types of backtrack memory
should be much more significant for the Social Golfers problem instances than
for the n-Queens problem instances because of the significantly higher number
of backtracks (cf. table 3).

The purpose of these experiments is twofold. First, to assess the influence
the implementation of backtrack memory when more variables are added, and
second, an estimation of the fraction of total CPU time which is spent managing
backtrack memory. This can be estimated from the influence of the backtrack
strategy on the total CPU time.

The results for each solver and problem class were compared with the Wil-
coxon test. The differences for the n-Queens problem are statistically signifi-
cant at the 0.05 level. For the Social Golfers problem the differences for Choco,
ECLiPSe, and Minion are significant at the 0.05 level; the differences for Gecode
are not statistically significant.
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problem instance normal model extended model
n-Queens 20 210 1920

21 231 2121
22 253 2332
23 276 2553
24 300 2784
25 325 3025
26 351 3276
27 378 3537
28 406 3808
29 435 4089

Social Golfers 2,4,4 1088 9728
2,5,4 2100 19200
2,6,4 3600 33408
2,7,4 5684 53312
2,8,4 8448 79872
2,9,4 11988 114048
2,10,4 16400 156800

Table 5: Number of variables for normal and extended n-Queens and Social
Golfers models.
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Figure 10: CPU time of extended model with more variables over CPU time
of normal model. Shapes denote solvers, crosshairs denote problem
classes. Values greater than 1 denote that the CPU time for the
normal model was less than the CPU time for the extended model.
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Figure 10 shows the CPU time of the extended model over the CPU time of
the normal model. The solver which is affected most by the change is obviously
Minion; followed by Gecode. The differences of up to about 35% for Gecode
suggest that it is affected, but the variation between individual runs is too much
to make the differences statistically significant. Choco and ECLiPSe are affected
to a much lesser extent.

The results correspond exactly to the expectations. Minion takes the biggest
hit in terms of performance because it uses copying for backtrack memory and
has to copy more data. Gecode combines copying with recomputation and is
therefore less affected, as no recomputation has to be performed for the addi-
tional variables. Both Choco and ECLiPSe do trailing and are least affected by
the addition of more variables.

Figure 10 also shows that the CPU time of the model with more variables
increases for Gecode and Minion as the number of backtracks (and therefore
the size of the search tree) increases. For Choco and ECLiPSe it stays ap-
proximately the same. Again, this result is expected because while for copying
backtrack memory the amount of work to be done increases at each node, it
stays approximately the same for trailing backtrack memory.

The number of variables and backtracks for the n-Queens problem instances
are much less than for the Social Golfers instances (cf. tables 5 and 3) and
therefore the expected effects are less significant. The differences for Minion
stand out from the differences for the other solvers, suggesting that it is the only
one which was truly affected by the changes. The differences are significantly
smaller than for the Social Golfers problem though.

The results show that managing backtrack memory can account for a signif-
icant part of the total CPU time. Adding new variables without any constraints
on them does not increase the work to be done for propagating changes, but
nevertheless the total CPU time can increase significantly. For the remodelled
n-Queens problem the differences for Minion are up to about 23% even though
more work is done propagating changes than exploring the search tree (cf. dis-
cussion for figure 6). For the Social Golfers problem, which has many more
variables (cf. table 5), the proportion of the CPU time spent on managing back-
track memory is even larger; the differences are up to about 50% for Minion.

5.3.4 Garbage collection

ECLiPSe is the only solver which provides garbage collection and a facility to
switch it off. The n-Queens, the Social Golfers, and the Balanced Incomplete
Block Design problem classes were rerun with garbage collection turned off.

The results were compared to the results with garbage collection switched
on with the Wilcoxon test. The differences are statistically significant at the
0.01 level.

The results are shown in relation to the number of backtracks because the
correlation between CPU time and the number of backtracks is stronger than
the correlation between CPU time and the number of variables.

Figure 11 shows that the CPU times for the runs with garbage collection
switched off are up to about 35% higher than those with garbage collection
switched on for the Social Golfers problem. The CPU times for Balanced In-
complete Block Design are similar, but less pronounced. A possible reason
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Figure 11: CPU time of run with garbage collection switched off over CPU time
of run with garbage collection switched on. Values greater than 1
denote that garbage collection is faster than no garbage collection.

for that is the lower number of backtracks. The amount of memory that the
n-Queens instances use is so small that the differences are not significant.

The results show that the benefits of garbage collection do not only include
a smaller memory footprint, but also increases in performance in terms of CPU
time. These results may not be applicable for other implementations of back-
track memory though. The second key point which can be concluded from
figure 11 is that while garbage collection can improve performance up to a cer-
tain number of backtracks, the improvements become smaller as the number of
backtracks and the total amount of memory the problem requires grows. It is
conceivable that for much larger problem instances than investigated here, the
CPU time with garbage collection becomes larger than the CPU time without
garbage collection.

5.4 Order of propagators
Choco, ECLiPSe, and Gecode provide facilities to attach priorities to propa-
gators, i.e. changes will not be propagated in the order they are made in, but
according to a priority value. Minion does not provide such a facility.

For the investigated problems, Choco does not make use of the priorities,
i.e. the priority is the same for everything.

In ECLiPSe some of the global constraints such as alldifferent and element
are processed with a higher priority than constraints of a lower arity. Only the
alldifferent constraint is used in the n-Queens, the Golomb Ruler, and the Magic
Square problems.

Gecode orders the propagators according the complexity of the propagation
function, which is defined when the propagator is implemented. Experiments
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for some problem instances were conducted with the propagator queue reversed.
For the Balanced Incomplete Block Design problem, no differences at all were
observed, whereas for example for the n-Queens problem there were differences
in terms of CPU time. In all cases the maximum difference was only a small
fraction of the total CPU time though.

5.5 Types of constraints
Choco, ECLiPSe, and Gecode offer basic constraints which can be combined
into more complex ones to a larger extent than Minion. For the particular
models used in this paper the same constraints were used and this did not have
any negative impact in terms of performance; for other applications it simplifies
modelling problems though and is therefore also likely to have an impact on
performance. For example the n-Queens problem could be modelled without
auxiliary variables in Choco, ECLiPSe, and Gecode and is likely to be perform
better than a model of the same problem in Minion which has to use auxiliary
variables.

On the other hand Minion provides an implementation of the sum constraints
with watched literals, which could improve its performance [3].

An interesting point is that Minion does not have a sum-equals constraint,
but only sum-greater-or-equal and sum-less-or-equal constraints. The semantics
of the sum-equals constraint can be achieved by combining the two constraints,
but this increases the total number of constraints; in some cases considerably.
Nevertheless there does not seem to be a negative impact on performance, on the
contrary. This indicates that the most obvious way to implement a constraint
may not always be the most efficient one.

5.6 Optimisation problems
The investigated solvers implement several different approaches to handling op-
timisation problems; Choco and Minion handle the value to be minimised in
specialised implementations of search, ECLiPSe adjusts the bounds of the cost
variable while Gecode imposes additional constraints on it. Figure 2 suggests
that there is no intrinsic advantage of one way over the other.

6 Conclusion
We presented a comprehensive comparison and evaluation of the implementation
design decisions in state-of-the-art constraint problem solvers. The experiments
provide not only a qualitative, but also a quantitative comparison of different
implementation approaches.

The results show that choosing one design decision over another when im-
plementing a constraint solver does not usually give performance benefits in
general. The exception are specialised variable implementations – implement-
ing specialised versions of constraints and propagators for the different variable
types improves performance significantly.

The design decisions associated with memory management, such as back-
track memory, are much harder to classify. Depending on the problem to solve
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and the number of variables and constraints involved, a particular implementa-
tion of memory management will perform better than others. This does not only
depend on the type of problem, but also on the size of the problem though. The
results do show however that memory management can account for a significant
part of the total CPU time required to solve a problem.

The large differences among the CPU times the individual solvers take em-
phasise the importance of choosing the right solver for a given task. This decision
is absolutely crucial to performance. In an ideal world, a solver would, given a
particular problem, adapt its design decisions and provide an implementation
specialised for this problem.

The performance of the individual solvers in the experiments should not be
taken as a benchmark or as a suggestion which of these solvers to use for a given
problem. The focus of the experiments was to compare the solvers on models
which are as similar as possible. For any other application, the problem model
will be tuned for a particular solver to use its specific strengths which cannot be
compared here. It is entirely possible that with a carefully-tuned model a solver
which performs badly in an experiment reported here becomes much better than
any other solver.
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