
Discriminating Instance Generation for Automated
Constraint Model Selection

Bilal Syed Hussain1, Ian P. Gent1, Christopher Jefferson1, Lars Kotthoff2, Ian
Miguel1, Glenna F. Nightingale1, and Peter Nightingale1

1 University of St Andrews
2 INSIGHT Centre for Data Analytics

Abstract One approach to automated constraint modelling is to generate, and
then select from, a set of candidate models. This method is used by the auto-
mated modelling system CONJURE. To select a preferred model or set of models
for a problem class from the candidates, CONJURE uses a set of training instances
drawn from the target class. It is important that the training instances are discrim-
inating. If all models solve a given instance in a trivial amount of time, or if no
models solve it in the time available, then the instance is not useful for model
selection. This paper addresses the task of generating small sets of discriminating
training instances automatically. The instance space is determined by the param-
eters of the associated problem class. We develop a number of methods of find-
ing parameter configurations that give discriminating training instances, some of
them leveraging existing parameter-tuning techniques. Our experimental results
confirm the success of our approach in reducing a large set of input models to a
small set that we can expect to perform well for the given problem class.

1 Introduction and Background

Numerous approaches have been taken to automating aspects of constraint modelling,
including: learning models from examples [8,4,5,17,3]; automated transformation of
medium-level solver-independent constraint models [22,21,23,20]; theorem proving [7];
case-based reasoning [18]; and refinement of abstract constraint specifications [10] in
languages such as ESRA [9], ESSENCE [11], F [14] or Zinc [19,16]. We focus on the
refinement approach, where a user writes a constraint specification describing a prob-
lem above the level of abstraction at which modelling decisions are made. Constraint
specification languages support abstract decision variables with types such as set, mul-
tiset, relation and function, as well as nested types, such as set of sets and multiset
of relations. Therefore, problems can typically be specified very concisely. However,
existing constraint solvers do not support these abstract decision variables directly, so
abstract constraint specifications must be refined into concrete constraint models.

We use ESSENCE [11] herein. An ESSENCE specification (see Fig. 1) identifies: the
parameters of the problem class (given), whose values define an instance; the combi-
natorial objects to be found (find); and the constraints the objects must satisfy (such
that). An objective function may also be specified (min/maximising) and iden-
tifiers declared (letting). Our CONJURE system3[2] employs refinement rules to

3 http://bitbucket.org/stacs cp/conjure-public



convert an ESSENCE specification into the solver-independent constraint modelling lan-
guage ESSENCE′ [22]. We use SAVILEROW4 to translate an ESSENCE′ model into input
for a particular constraint solver while performing solver-specific model optimisations.

By following alternative refinement paths to select alternative representations and
selectively employ modelling devices like channelling CONJURE can typically produce
a large set of models for a given ESSENCE specification. We employ a racing process to
select among these candidate models, in which a set of training instances drawn from
the problem class being modelled are used to gauge relative model performance. For
this process to be effective, it is important that the instances chosen are discriminating:
If all models solve a given instance in a trivial amount of time, or if no models solve it
in the time available, then the instance is not useful for model selection. In this paper
we address the task of generating discriminating training instances automatically.

2 Racing for Automated Model Selection

Our model selection method, an enhanced version of that we reported in [1], takes as
input a set of instances drawn from the target problem class. Our performance measure
of a model with respect to an instance is the time taken for SAVILEROW to instantiate
the model and translate for input to the MINION constraint solver [12] plus the time
taken for MINION to solve the instance. We include the time taken by SAVILEROW
since it adds desirable instance-specific optimisations to the model, such as common
subexpression elimination [13].

We conduct race [6] for each provided instance. Given a parameter ρ ≥ 1, a model
is ρ-dominated on an instance by another model if the measure for the second model is
at least ρ times faster than the first. The ‘winners’ of an instance race are the models not
ρ-dominated by any other model. So that trivial instances do not discriminate we do not
consider any model that solves within 1s to be dominated. All models enter each race,
but for efficiency a model is terminated as soon as it is ρ−dominated by some other
model. Furthermore, the order in which the models are executed is influenced by their
performance in previous races: good-performing models are executed first to establish
a good ρ bound early. In order to guide our exploration of the instance space we assign
a discriminatory quality value to an instance with respect to the results of the race run.
This is the fraction of models that are ρ-dominated.

A set of instances is ρ-fractured if every model is ρ-dominated on at least one in-
stance. In the presence of fracturing, care must be taken in defining the set of winning
models over a race sequence. We do so as follows. We first find a minimum hitting
set of winning models {a1, a2, a3, ...} which covers all instance races. We then de-
fine the set Ai as the set of models that won every race that ai won. The set of sets
{A1, A2, A3, ...} then gives a summary of the winning models over all fractured parts
of the instance space. Note that each Ai ∩Aj = ∅ (where i ̸= j) as otherwise we could
find a smaller hitting set. Also note that in an unfractured instance space the unique A1

is simply the set of models which won all races. However, for fractured spaces the set
{Ai} is not uniquely defined as it depends on the hitting set found: nevertheless it gives
us a representation of one particular fracturing of the instance space.

4 http://savilerow.cs.st-andrews.ac.uk



3 Methods for Generating Discriminating Instances

The instance space is defined by the parameters of a problem class. Consider the ESSENCE
specifications in Figure 1. Langford’s Problem has two independent integer parameters
and hence a two-dimensional instance space. The Knapsack Problem is an example of
a more complex instance space, consisting of two integers and two functions. The first
integer, n, governs the number of items and also the domain of the two given functions,
which define the weights and values of those items. Our three methods for generat-
ing discriminating instances in these spaces are described below. All run a sequence of
races and combine the results following the method described in Section 2.

Undirected: For each race in a sequence, undirected simply draws a sample
from the instance space and runs a race. Section 4 describes our sampling method.

Markov Chain: This method is loosely based on the Markov chain Monte Carlo
methods used, e.g., to estimate the value of a multi-dimensional integral. We assume
that discriminating instances are likely to be found near (by some proximity mea-
sure) other discriminating instances, and non-discriminating instances near other non-
discriminating instances. This naturally leads to a Markov chain that walks the instance
space, is attracted towards known discriminating instances, and is repelled from known
non-discriminating instances. Our measure of proximity per parameter type:

Integer The distance is simply the absolute difference between the two values.
Total Function Given functions f and g we compute the distance between f(i) and

g(i) for each i where both functions are defined, and aggregate using Euclidean
distance. When f and g have different domains of definition, some mappings in
f and/or g will be discarded. Suppose we had given weights : function
(total) int(1..n) --> int(1..100) (as in the Knapsack Problem) with
n a parameter. If the domain of definition int(1..n) differs between f and g,
then n must differ and this will count towards the instance distance.

Set Given sets S and T , the distance is
√
|S \ T |+ |T \ S|, also Euclidean.

Relation Treating a relation as a set of tuples, we use the distance measure for sets.

To obtain the instance distance, we combine the distance measure for each parame-
ter again using the Euclidean distance. This combines elegantly with the Euclidean
distances computed per parameter. An initial instance is sampled using the method de-
scribed in Section 4. A race is run using this instance and a record taken of its discrimi-
natory quality. Each subsequent instance (sampled using the same method) is accepted
or rejected according to the scheme below. If an instance is accepted a race is run with
that instance, otherwise another instance is generated, and so on until the required race
sequence is complete. We use the following acceptance function, where xi−1 is the
previous accepted instance and x′

i is the proposed instance.

A(xi−1, x
′
i) =

G′(x′
i)

G(xi−1)

G′ estimates the discriminatory quality of the instance in the interval [0, 1] using the
quality values of previously accepted instances found by racing. We define a radius of
influence r, which is 10% of the greatest possible distance between any two instances,



LANGFORD’S PROBLEM (CSPLIB 24)
given k, n : int(1..)
letting seqLength be k * n
letting seqIndex be domain int(1..seqLength)
find seq : function (total, surjective) seqIndex --> int(1..n)
such that forAll i,j : seqIndex , i < j .

seq(i) = seq(j) -> seq(i) = j - i - 1

THE KNAPSACK PROBLEM
given n, totalWeight : int(1..)
given weights, values : function (total) int(1..n) --> int(1..)
find picked: set(maxSize n, minSize 1) of int(1..n)
maximising (sum i in picked . values(i) )
such that (sum i in picked . weights(i) ) <= totalWeight

THE PROGRESSIVE PARTY PROBLEM (CSPLIB 14)
given n_upper, n_boats, n_periods : int(1..)
letting Boat be domain int(1..n_boats)
given capacity, crew : function (total) Boat --> int(1..n_upper)
where forAll i : Boat . crew(i) <= capacity(i),
find hosts : set of Boat,

sched : set (size n_periods) of function (total) Boat --> Boat
minimising |hosts|
such that forAll p in sched . range(p) subsetEq hosts,

forAll p in sched . forAll h in hosts . p(h) = h,
forAll p in sched . forAll h in hosts .

(sum b in preImage(p,h) . crew(b))<= capacity(h),
forAll b1,b2 : Boat , b1 != b2 .

(sum p in sched . (p(b1) = p(b2))) <= 1

THE WAREHOUSE LOCATION PROBLEM. (CSPLIB 34)
given n_upper, n_stores, n_warehouses : int(1..30)
letting Store be domain int(1..n_stores),

WHouse be domain int(1..n_warehouses)
given capacity : function (total) WHouse --> int(1..n_upper),

opencost : function (total) WHouse --> int(1..n_upper),
cost : function (total) tuple (Store, WHouse) --> int(1..n_upper)

find open : function (total) Store --> WHouse
minimising (sum r in range(open). opencost(r)) + sum s : Store . cost((s,open(s)))
such that forAll w : WHouse . |preImage(open,w)| <= capacity(w)

Figure 1. Four sample ESSENCE specifications.

using the distance measure above. G′(x′
i) finds the set of all previous accepted instances

within distance r of x′
i. If this set is non-empty, G′(x′

i) returns the mean of the true
quality values for the set. Otherwise, G′(x′

i) = 0.5. G(xi−1) gives the true quality of
xi−1. Finally, a pseudorandom number a is generated within [0, 1], and x′

i is accepted
if A(xi−1, x

′
i) ≥ a then. Hence, the proposed instance is always accepted if G′(x′

i) is
greater than G(xi−1).

Smac: Our final method is based on SMAC [15], an automatic algorithm configura-
tion system. Given an algorithm, a description of its parameters, and a set of instances,
it finds the set of parameters for the algorithm that delivers the best performance on the
set of instances. Finding discriminatory instances is a very similar setting – the algo-
rithm is the problem class specification, its parameters instantiate particular instances
of the class and the set of problem “instances” is the set of models. We want to find the
set of problem class parameters – the set of problem instances – that has the optimum
discriminatory power with respect to the models.



We encode the problem class parameters into SMAC’s input format, which uses
integer and categorical variables. Integer givens are converted to integer parameters
with the range specified in the problem definition. We model structured givens such as
functions using multiple SMAC parameters. When one given depends on another, such
as the size of the domain of the function depending on n in the Knapsack Problem, we
must be conservative: sufficient SMAC parameters are used to accommodate the maxi-
mum size of the structured given. The extraneous parameters are ignored when racing
the instances so produced. Although SMAC has demonstrated that it is able to handle
large parameter spaces, this conservative encoding may hinder its ability to cover the
space effectively, since many of the values it is producing may be ignored. Furthermore,
SMAC does not support the complex constraints between parameters that we sometimes
require (where), so we use CONJURE to validate the instances that SMAC generates
and discard those that do not satisfy the constraints.

4 Uniform Versus Non-uniform Sampling

Except for SMAC, which has its own sampling method, our generation approaches re-
quire the ability to sample from the instance space associated with a problem class.
Since the instance spaces of the problem classes we consider are typically infinite, our
method requires some sensible bounds on the parameters involved in order to circum-
scribe a finite sub-space of interest. For example in Langford’s Problem, as discussed in
Section 5, we limit the two integer parameters to the ranges 2..10 and 1..50 respectively.

When the parameters defining the space are independent (e.g. the pair of integer
parameters to Langford’s problem), uniform sampling is straightforward: simply gener-
ate a value uniformly and independently for each parameter. When the parameters are
not independent, uniform sampling is more difficult. Reconsider the Knapsack Problem
from Figure 1. An approach to sampling from this space is first to generate n uniformly
then uniformly and independently generate a mapping for each element of the domain
(1..n) of the two functions weights and values. However, this introduces bias: there
are many more possible functions for large values of n upper than there are for small
values of n upper. Hence, if we generate n uniformly then a particular function for
small n is far more likely to be selected than a particular function for large n.

A solution to this problem is to enumerate all of the valid instances of the instance
sub-space and sample uniformly from this set. This enumeration problem is naturally
cast as a (simple) constraint problem. An ESSENCE specification E∗ for the enumera-
tion problem can be obtained automatically from an original ESSENCE specification E
simply by replacing in E the given (parameter) statements with find (decision vari-
able) statements and discarding the rest of E. As a very simple example, performing
this process for Langford’s Problem produces:

find k : int(2..10)
find n : int(1..50)

Care must be taken that this transformation produces valid ESSENCE. For the Knapsack
Problem (assuming sensible parameter limits) it produces:

find n : int(1..100)



find totalWeight : int (1..1000)
find weights : function (total) int(1..n) --> int(1..100)
find values : function (total) int(1..n) --> int(1..100)

This is invalid because a decision variable is used to define the size of the domain of
the two function variables. The solution we adopt is to leave n as a parameter, solve the
problem for each value of n and take the union of the results.

We obtain a single model for E∗ automatically using CONJURE and the Compact
heuristic [1] — this is sufficient because the enumeration problem is typically easy.
MINION is then used to find all solutions to the model. Our uniform sampling method
is to select uniformly from this set of solutions.

The drawback of uniform is that it limits the size of space that we can consider.
An alternative approach, which we call solver-random, is to sample by requesting
a single solution from MINION, employing a random variable and value order. This in-
troduces bias for much the same reason as described above: the distribution of solutions
to the model may not be uniform. However, solver-random is much more scalable.

In order to compare uniform with solver-random we performed an experi-
ment on two problem classes: Warehouse Location and the Progressive Party Problem
(see Figure 1). So that uniform sampling was feasible, the instance space for each
problem class was restricted to around a billion instances by limiting the upper bounds
of each of their parameters. For each problem class we ran three sequences of thirty
races using our Markov and Undirected generation approaches. In this experiment
there was no substantive difference between Markov and Undirected — probably
because of the (lack of) discriminatory quality of the instance sampled as we discuss
below. For Warehouse Location the performance of the two sampling methods is identi-
cal, reducing 128 input models to 64 non-dominated models. For the Progressive Party
Problem solver-random actually performs better than uniform, reducing 256 in-
put models to 16 non-dominated models, whereas uniform produces between 63 and
77 non-dominated models. The bias inherent to solver-uniform appears to have
been beneficial in this case, guiding the methods to discriminating instances.

These experiments provide some evidence that solver-random is a reasonable
approach to sampling the instance space. It is also worth noting that the restrictions
on the size of the instance space that we explore (to accommodate uniform) restricts
the discriminatory quality of the instances that we find — producing 64 non-dominated
models for Warehouse Location is a relatively weak result. solver-random scales
easily to more challenging, hence more discriminating, instances as we will see in the
following section where we use solver-random exclusively.

5 Experimental Results

In this section we report an experimental evaluation of our instance generation methods.
Following the outcome of our experiment in Section 4, we use solver-random sam-
pling throughout. We experiment on six problem classes described below with results
summarised in Table 1. For each class we run three independent sequences of races.
For Markov Chain and Undirected we run 30 races, each with a time budget of
6 hours. This time budget is divided by the number of models to obtain the maximum



time allowed for a particular model to solve an instance. Rather than a maximum num-
ber of runs, SMAC requires a total time budget. We specify the maximum time either of
the other methods took to complete the race sequence.

Given the volume of experiments we use heterogeneous compute resources, while
ensuring that all experiments for each problem class are run on the same resource. In
all cases, a model is given 6.5GB of RAM and run on an AMD-based architecture.
The Social Golfer Problem was run on a 2.1GHz processor, Warehouse Location on a
1.4GHz processor, and the remainder on 2.1GHz processors on Microsoft Azure.

Our results are summarised in Table 1. For each problem class we record: the num-
ber of models refined by CONJURE from the associated ESSENCE specification; the
size of the output set(s) of models as described in Section 2; the number of discovered
fractured parts of the instance space; and, for Markov Chain and Undirected,
the number of races until convergence. This last measure indicates how many of the 30
races are necessary to achieve the final result. Detailed discussion follows.

The Knapsack Problem The parameter space is limited as described in Section 4.
All of our methods perform well on this problem class, identifying that the instance
space is fractured into two parts. The parts correspond to satisfiable versus unsatisfi-
able instances. For the satisfiable part, all three methods returned a single winner model
(from the 64 input), which employs a 0/1 model of the problem. For the unsatisfiable
part, all three methods also returned a single winning model based on an explicit repre-
sentation of the set of items in the knapsack. Markov and SMAC converge quickly on
this result, whereas undirected shows some variability in this regard.

Langford’s Problem The parameters to this problem are a pair of independent in-
tegers (limited as described in Section 4). Therefore, solver-random sampling is
unbiased for this problem. None of our methods found the instance space to be frac-
tured, and each was able to reduce the input set of models drastically to a small set of
non-dominated models. Over the three independent runs, Markov shows a slight edge
in performance returning a single model in one case, whereas Undirected on one
occasion returns six models. Both show some variability in steps to convergence.

The Social Golfer Problem The parameters to this problem are a triple of indepen-
dent integers, hence solver-random sampling is again unbiased. Each parameter is
limited between 1 and 100. Hence, a large fraction of this instance space is unfeasibly
difficult so we would expect our more informed approaches to perform better in this
case study. Both SMAC and

Indeed, some variability is present in the results: in two of the three runs, undirected
is able to find a single dominating model, but on the third it is unable reduce the number
of models. SMAC performs similarly, but fails to reduce the number of models in two
of the three runs.

5.1 Case Study 4: The Progressive Party Problem

Our fourth case study is the Progressive Party Problem. The ESSENCE specification
is given in Figure 1. The parameters to this problem are a pair of integers and a pair
of functions, where the domain of each function is defined by the integer parameter
n boats. CONJURE refines 256 models from the specification. All methods were able



to reduce the models significantly but only Markov and Undirected were able to
find fracturing.

5.2 Case Study 5: The Warehouse Location Problem

Our fifth case study is the Warehouse Location Problem. The ESSENCE specification is
given in Figure 1. CONJURE refines 128 models from the specification. Again all of our
methods are able to achieve significant reductions, with Markov achieving the smallest
sets of non-dominated models. Undirected gives the worst results.

5.3 Case Study 6: Balanced Academic Curriculum Problem

Our final case study is the Balanced Academic Curriculum Problem. CONJURE refines
48 models from the specification. Except in one case where fracturing was detected,
Markov and Uniform are able to reduce the set of models to one in all runs. SMAC
has much worse performance.

Markov SMAC Undirected

Output set Steps to Output set Output set Steps to
Problem #Models Sizes Frac. Convergence Sizes Frac. Sizes Frac. Convergence

Knapsack-1 64 1,1 2 20 1,1 2 1,1 2 7
Knapsack-2 64 1,1 2 13 1,1 2 1,1 2 30
Knapsack-3 64 1,1 2 1 1,1 2 1,1 2 3

Langford-1 154 4 1 28 4 1 6 1 1
Langford-2 154 1 1 14 3 1 4 1 14
Langford-3 154 4 1 2 4 1 3 1 29

SGP-1 24 1,4 2 26 1 1 1 1 7
SGP-2 24 4 1 13 24 1 1 1 15
SGP-3 24 1 1 7 24 1 24 1 30

PPP-1 256 32,8 2 2 8 1 53,8 2 1
PPP-2 256 32,8 2 12 16 1 27,8 2 1
PPP-3 256 8 1 9 15 1 17 1 7

Warehouse-1 128 32 1 17 32 1 45 1 16
Warehouse-2 128 24 1 13 49 1 72 1 26
Warehouse-3 128 8 1 16 27 1 54 1 26

BACP-1 48 1,1 2 24 26 1 1 1 8
BACP-2 48 1 1 1 8 1 1 1 25
BACP-3 48 1 1 2 25 1 1 1 7

Table 1. Results for the six problem classes over three independent runs.



6 Conclusions

We have developed and investigated three methods for generating discriminating in-
stances for the purpose of automated constraint model selection. Our experimental eval-
uation shows that all of these methods are capable of reducing a large number of possi-
ble models to a much smaller set. The methods are able to detect fracturing if it occurs
and successfully determine the best models for each fraction.

This case study demonstrates that we are able to find a small set of suitable models
from a large set of candidates, even if there is not a single one that is the best across the
entire instance space.

In general, Markov appears to be more likely to detect fracturing than the other
methods.
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