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Abstract

The measure hypothesis is a quantitative strengthening of the P #£ NP conjecture
which asserts that NP is a nonnegligible subset of EXP. Cai, Sivakumar, and Strauss
(1997) showed that the analogue of this hypothesis in P is false. In particular, they
showed that NTIME[n'/1!] has measure 0 in P. We improve on their result to show that
the class of all languages decidable in nondeterministic sublinear time has measure 0 in
P. Our result is based on DNF width and holds for all four major notions of measure
on P.

1 Introduction

A central hypothesis of resource-bounded measure [7,8] is that NP does not have measure 0 in
EXP [10,11]. Cai, Sivakumar, and Strauss [5] proved the surprising result that NTIME[n!/!!]
has measure 0 in P. This implies the analogue of the measure hypothesis in P fails, because
NTIME log n| has measure 0 in P.

We improve the result of Cai et al. by showing that the class of all languages that can
be decided in nondeterministic time at most

( 2lglgn)
nl|l—
lgn

has measure 0 in P. In particular, the nondeterministic sublinear time class

NTIME[o(n)]

has measure 0 in P.

Resource-bounded measure was initially defined for exponential-time and larger classes
[7]. Defining measure within subexponential- and polynomial-time complexity classes has
been challenging [2] and there are several notions [12,14] The result of Cai et al. holds for
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a notion of measure on P we will refer to as I'y(P)-measure. Moser [12] developed a new
notion of measure called F-measure. It is the only notion of measure that allows for defining
resource-bounded dimension [9] at P. It was unknown whether or not the result of Cai et al.
also holds for F-measure. Our result holds for I'(P) measure (defined in [2]) and therefore
for F-measure and all the notions of measure at P considered in [12,14].

Our stronger result also has a much easier proof than the proof in [5]. Cai et al. use
Hastad’s switching lemma and pseudorandom generators to show that the set of languages
with nearly exponential size circuits has I'g(P)-measure 0 [5]. We use DNF width rather than
the circuit size to improve their result. It is well known that a random Boolean function
has DNF width close to n (see [6]). In Section 3, we show that the class of languages with
sublinear DNF width has measure 0 in P. This is then applied in Section 4 to show that
nondeterministic sublinear time also has measure 0 in P.

2 Preliminaries

2.1 Languages and Boolean functions

The set of all binary strings is {0, 1}*. The length of a string x € {0,1}* is denoted by |x|.
The empty string is denoted by A. For n € N, {0,1}" is the set of strings of length n. sg =
A, s1=0,52 = 1,53 =00, ... is the standard lexicographic enumeration of {0, 1}*. A language
L is a subset of {0,1}*. The set of length n strings of a language L is L= = L N {0, 1}".
Associated with every language L is its characteristic sequence x; € {0,1}>°. Tt is defined
as

xoli] =1 < s; € LforieN,

where x[i] is the i bit of 7. We also index y;, with strings i.e. for i € N, xr[s;] = xr[i].
xzli, 7] denotes the i through ;% bits of x 1, while yz[length n] denotes x[2" — 1,271 — 2],
i.e. the substring of the characteristic string of L corresponding to the strings in L=".

A Boolean function is any f : {0,1}* — {0,1}. A DNF (disjunctive normal form)
formula of f over the variables x1,xs,- - , x, is the logical OR of terms. A term is a logical
AND of literals, where a literal is either a variable z; or its logical negation Z;. We require
that no term contains a variable and its negation [13]. Also the logical OR of the empty
term computes the constant 1 function while the the empty DNF computes the constant
0 function. A term’s width is the number of literals in it. The size of a DNF computing
f is the number of terms in it, while its width is the length of its longest term. The DNF
width of f is the shortest width of any DNF computing f. We note that the width of the
constant 0 and 1 functions is 0. For any term T we say that T fixes a bit position i if either
x; or its negation appear in T. The bit positions that aren’t fixed by T are called free bit
positions. For example the term z123%4 : {0,1}* — {0, 1}, fixes the first, third and fourth
bit positions, while the second bit position is free. We say that T covers a subset of {0, 1}"
if it evaluates to true on only the elements of the subset. The subset covered by 7' is the set
of all strings that agree with 7" on all its fixed bit positions. A string € {0,1}" agrees with
T if, for any fixed bit position ¢ of T', the ith bit of x is 1 if and only if z; appears in T. We



call the subset covered by T a subcube of dimension n — k, where k is the number of literals
in T'. It is called a subcube because it is a dimension n — k Hamming cube contained in the
dimension n Hamming cube.

Associated with any Boolean function is its characteristic string x; € {0,1}*" defined as

fw) =1 < xyslw] =1 for w e {0, 1}".
For any language L we view L=" as the Boolean function yp-» defined as
Xr=n(w) =1 <= Lw] =1 for all w € {0,1}".
We can then define DNF ;q¢n (L™") to be the DNF width of xp=n.

2.2 Resource-bounded Measure at P

Resource-bounded measure was introduced by Lutz [7]. He used martingales and a resource
bound A D p to characterize classes of languages as either “big” or “small”. Here p is
the class of functions computable in polynomial time. Resource-bounded measure is a gen-
eralization of classical Lebesgue measure. For a given resource bound A O p we get a
“nice” characterization of sets of languages as having measure 0, measure 1 or being im-
measurable with respect to A. Associated with each resource bound A is a class R(A)
that does not have A-measure 0. We can then use A-measure to define a measure on
classes within R(A). For example, p-measure yields a measure on the exponential-time class
R(p) = E = DTIME[2°™)]. For the class p, of quasipolynomial-time computable functions,
po-measure yields a measure on R(py) = EXP = DTIME[2"""]. See [4,8] for a survey of
resource-bounded measure in A D p.

An apparently more difficult task is developing a notion of resource-bounded measure
on subexponential classes, in particular developing a measure on P [2]. There are at least
four notions of measure defined on P. Three of these are discussed by Strauss [14] and
the other is discussed by Moser [12]. None of them are quite as “nice” as measures on
R(A) D E, each one of them having some limitations. See [3,12,14] for a more detailed
discussion of the limitations of these notions of measure. In this paper we only consider one
notion of measure on P we call ['(P)-measure. I'(P)-measure was introduced in [2]. We use
['(P)-measure for two reasons. First, it is the simplest of the four notions of measure on P.
Second, the martingales considered in I'(P)-measure can be easily shown to be martingales
in the other notions of measure at P [12,14].

2.3 TI'(P)-measure

A martingale is a function d : {0,1}* — [0, 00) that satisfies the the following averaging
condition: dwl) + dlwo
d(w) = A ); (@0) v e f0,1}.

Intuitively, the input w € {0, 1}* to the martingale d is a prefix of the characteristic sequence
of a language. The martingale starts with initial capital d(\). More generally, d(w) is the
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martingale’s current capital after betting on the strings so,s1,--- , Sjy—1 in the standard
ordering. The martingale d tries to predict the membership of string s/, when given input
w. If d chooses to bet on s|,, and is successful in predicting its membership, then its current
capital increases, otherwise it decreases. The martingale d can also choose to not risk its
current capital d(w) by not betting on s),|. The goal is to make d grow without bound on
some subset of {0,1}°°. We say a martingale d succeeds on a language L if

limsup d(x.[0,n — 1]) = occ.
n—oo

We say d succeeds on a class C' C {0, 1} if it succeeds on every language in C. It is easy
to see that the probability a martingale d succeeds on a randomly selected language is 0. (A
language L is randomly selected by adding each string to L with probability 1/2.) It can be
shown that any class C' C {0, 1}* has measure 0 under the probability measure if and only
if some martingale d succeeds on C'. If d can be computed in some resource bound A then
we say that C' has A-measure 0 if d succeeds on C.

A T'(P)-martingale is a martingale d such that:

e d(w) can be computed by a Turing machine M with oracle access to w and input s,
We denote this computation as M (s},).

o M"Y (s,) is computed in time polynomial in Ig(|w|). In other words, the computation
is polynomial in the length of s,.

e d only bets on strings in a P-printable set denoted Gj.

The input string sj,| to M*(s},|) allows the Turing machine to compute the length of w
without reading all of w whose length is exponential in the length of s},. A set S C {0,1}*
is P-printable [1] if SN {0,1}" can be printed in time polynomial in n. A class C' C {0, 1}*
has I'(P)-measure 0 zero if there is some I'(P)-martingale that succeeds on it [14].

3 Measure and DNF Width

In this section we show that the class of languages with sublinear DNF width has measure 0 in
P. Recall that for a language L, DNF;q,(L™") denotes the DNF width of the characteristic
string of L at length n.

Theorem 3.1. The class
21g1
X = {L € {0,1}> ‘ DNFyiqen(L™") < n (1 _ =8 g”) i.o.}

has T'(P)-measure 0.

Proof. For clarity we omit floor and ceiling functions.



The Martingale

Consider the following martingale d that starts with initial capital 4. Let L be the language
d is betting on. d splits its initial capital capital into portions C;1,Ci2,¢ € N, where
Ciyp = Cip = 1/i%. C,; and C,, 5 are reserved for betting on strings in {0,1}". For each
length n, d only risks C,,; and C,, 5. Thus, d never runs out of capital to bet on {0,1}" for
all n € N.

Now we describe how d bets on {0,1}" with C,, ;. d uses C,1 to bet that the first n
strings of {0,1}" don’t belong to L. If d makes no mistake then the capital C,,; grows from
1/n? to 2"/n?. But once d makes a mistake it loses all of C,, 1, i.e. C,, 1 becomes 0.

Next we describe how the martingale d bets on {0, 1}" with C,, 5. The martingale d only
bets with capital C,, 5 if it loses (), 1, i.e. d makes a mistake on the first string of length n that
belongs to L. Let us call this string w. We will use w to determine how d bets with C,, 5. Let
Wi, Wa, -+ , Wy 1gn De a partition of w into n/lgn substrings, such that w = wyws - - - W/ g ns
and each w; has length lgn. Each substring w; specifies a subset S,,, of dimension 21glgn
subcubes that contain w. &, consists of exactly those dimension 21glgn subcubes that
contain w, and whose free bit positions are in the range [(i — 1)(Ign) 4+ 1,ilgn]. In other
words, Sy, is the set of subcubes that contain w, and have their free bit positions consist
entirely of the bit positions of w that were used to form w;. We will refer to the subcubes
in S, as the boundary subcubes of w. It is easy to see that there are (21lglzn)lgin = pltol)
boundary subcubes of w. Each boundary subcube will be used to bet on the membership of
some strings in {0, 1}". d splits C,, 5 into (211§lgn)lgln equal parts Cy0,4, fori € [1, (211517;”)].
Each part will be used by a boundary subcube for betting.

Finally, to completely specify d, we describe how it bets with each C), 2; on any string
x € {0,1}" that comes after w, the string d lost all of C,,; on. d bets as follows:

for each boundary subcube B; of w do
Ch,2,i < current capital reserved for betting on B;;
if x € B; then
‘ bet all of C},2; on = being in L;
end
end
Algorithm 1: How d bets on any = € {0,1}" that comes after w.

Intuitively, each C,, 5, is reserved for betting on a boundary subcube of w. The martingale
predicts that each boundary subcube is contained in L=". If the subcube B; which contains
w is really contained in L=", then the capital reserved for betting on this subcube grows
from C,, 2 ; to 2% 1gn,10n727i‘ This follows because the martingale doesn’t make any mistakes
while betting on the 2%!818" — 1 strings in B; \ {w}, and each of these bets doubles C,, o ;.
Otherwise, if B; is not contained in L=" then the martingale will make a wrong prediction
and lose all its capital reserved for betting on B;.

The Martingale’s Winnings on X

We now show that d succeeds on any L € X by examining its winnings on L™".



In the first case, suppose the first n strings of {0,1}" are all not contained in L. In this
case we bet with C),; and raise this capital from 1/n? to 2" /n?.
In the second case, suppose DNF ;a0 (L=") < n(1 — 21@%) and one of the first n strings

of {0,1}™ is in L. Let us denote the first such string by w. In this case d will lose all of

Ch1 and have to bet with C, 5. Since DNFyiqen (L") < n(1 — @), w must be contained

lg
2lglgn

in a subcube of dimension at least ( sn )n, i.e. w is contained in subcube with at least

(Qﬂgg%)n free bit positions. Since w = wiwsy - - - Wy 1gp, one of the w;’s must have 21lglgn

free bit positions. Thus, there must be at least one boundary subcube of w that is contained
in L=". Since d must bet on such a subcube, its capital reserved for this subcube rises from
Cn’m — plto() o 222lg1g"—10n’2’i _ @(nlgn)'

Since any L € X satisfies the above two cases infinitely often, d’s capital rises by Q(n'&™)
infinitely often. Thus, d succeeds on X.

The Martingale is a I'(P)-Martingale

Now we need to show d is a I'(P)-martingale. It is easy to see that d is computable in time
polynomial in n. Since for each = € {0, 1}" we bet on, we iterate though n'+°(") subcubes of
dimension 21glgn, and each subcube contains O(lg®n) points. Also the set of strings that
d bets on in {0,1}" is P-printable since it only bets on the n>*°() points in the boundary
subcubes of the first n strings of length n. m

4 Measure and Nondeterministic Time

The following lemma is a generalization of an observation made in [5].

Lemma 4.1. For all n, if L=" can be decided by a nondeterministic Turing machine in time
f(n) <n, then L= has DNF width at most f(n).

Proof. It L= = (), then it is covered by the empty DNF which has width 0. All that’s left is
to show that L=" is covered by subcubes of dimension at least n — f(n) whenever L=" # ().
This is sufficient because every subcube of dimension at least n — f(n) is covered by a width
f(n) term, so L can be covered by a width f(n) DNF. Let M be a nondeterministic Turing
machine that decides L in time at most f(n) and x € L=". Thus, there is a nondeterministic
computation of M on input = that accepts. Since M uses at most f(n) time it can only
examine at most f(n) bits of z. So there are at least n — f(n) bits of 2 that aren’t examined
by M on some accepting computation of M on x. Therefore the set of all strings y € {0, 1}"
that agree with x in all the bit positions examined by an accepting computation must also be
accepted by the same computation. This set of strings is precisely a subcube of dimension at
least n — f(n); therefore, it is covered by a DNF term of width at most f(n). Since z € L="
was arbitrary, it follow that L=" can be covered by DNF term(s) of width at most f(n);
therefore, L=™ has DNF width at most f(n). O



Theorem 4.2. The class of all languages decidable in nondeterministic time at most n(1 —
—zllgglf") infinitely often has T'(P)-measure 0.

Proof. By Lemma 4.1, any language decidable in nondeterministic time at most n(1— Qﬁgﬁ)
gn

has DNF width at most n(1 — 21@#) for all but finitely many n. Therefore it follows by

Theorem 3.1 that the set of all such languages have I'(P)-measure 0. [

We now have the main result of the paper:

Corollary 4.3. NTIME [n(l — M)} has I'(P)-measure 0.

Ign
Corollary 4.4. NTIME|o(n)] has I'(P)-measure 0.

Because I'(P) measure 0 implies measure 0 in the other notions of measure on P [12,14],
Theorem 4.2 and its corollaries extend to these measures as well.

Corollary 4.5. The class of all languages decidable in nondeterministic time at most n(1 —
2lglgn

o ) infinitely often has F-measure 0, T'4(P)-measure 0, and T'/(P)-measure 0.

A language L has decision tree depth f(n) : N — N infinitely often if x;-- has deci-
sion tree depth at most f(n) for infinitely many n. It is easy to show and well known that
a function with decision tree depth k£ has DNF width at most k. See [13] for the defini-
tion of decision tree depth and a proof of the previous statement. Therefore Theorem 4.2
immediately implies the following corollary.

Corollary 4.6. The set of all languages with decision tree depth at most n(1 — Qﬂgg%)
infinitely often has I'(P)-measure 0.
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