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The lower bound in the conclusion of our theorem suffices to construct
pseudorandom generators with exponential stretch.
We also show that the same conclusion holds if the following two re-
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mate lower bound on the number of accepted inputs of a circuit, up to
multiplicative factors.
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1. Introduction

1.1. Background. The fascinating connection between the existence of ex-
plicit functions that cannot be computed by small Boolean circuits and effi-
ciently computable pseudorandom generators (PRGs) that suffice for deran-
domization, is one of the greatest achievements of complexity theory. The
following two are equivalent (Impagliazzo and Wigderson (1997)):
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1. There exists a language in the class E = TIME(2O(n)) that requires
Boolean circuits of size 2Ω(n) to be computed.

2. There exists a PRG G : {0, 1}m → {0, 1}n that is computable in time
poly(n) and fools Boolean circuits of size poly(n), where n = 2Ω(m).

It follows that both these items imply derandomization of probabilistic
polynomial-time algorithms with only polynomial-time overhead in the running
time (in the sequel we call such derandomizations full). Namely, BPP = P.
The connection between computational hardness and derandomization, which
was first suggested by Blum and Micali (1984) and Yao (1982) and was later
coined hardness vs. randomness, supported the common belief (or maybe even
is the origin of the belief) that in algorithmic settings, randomness does not
enhance computational power in a significant way. Furthermore, it pointed
out a tight relation between two central concepts in computational complexity:
circuit lower bounds and pseudorandomness.

In fact, this connection is so deep and profound that it extends to many
other settings. Klivans and van Melkebeek observed that the proof of Impagli-
azzo and Wigderson (1997) relativizes and thus extends to other complexity
classes (Klivans and van Melkebeek (2002)). For example, one can add an NP
oracle to all the machines and circuits involved in the foregoing equivalence
and obtain the derandomization of the class BPPNP (of languages that can
be computed in probabilistic polynomial-time with access to an NP oracle),
assuming hardness against circuits having access to an NP-oracle. They also
showed, under a similar assumption, a full derandomization of the class AM (of
languages for which membership can be proven via a constant-round interactive
proof), i.e. AM = NP. This result was later improved by Miltersen and Vinod-
chandran (2005); Shaltiel and Umans (2005); Umans (2003) who obtained an
equivalence between hardness and pseudorandomness as above in the nondeter-
ministic setting. That is, hardness against non-deterministic circuits (instead
of NP-oracle circuits) is equivalent to PRGs that fool non-deterministic circuits
and hence implies the derandomization of the class AM.

The foregoing equivalence also extends to other settings of parameters. For
example, one can weaken the lower bound in Item 1 to hold against circuits
of size poly(n), and then weaken the quality of the PRG in Item 2 so it only
has a polynomial stretch, i.e., n = poly(m). This in turn implies a weaker
derandomization of BPP placing it in the class SUBEXP (Babai, Fortnow,
Nisan, and Wigderson (1993)). Furthermore, there is a smooth transition of
tradeoffs between the hardness in Item 1 and the quality of the PRG in Item
2, where the exponential setting of parameters that we stated above is at the
one extreme (called the high-end) and the polynomial setting is at the other



Derandomization Implies Exponential-Size Lower Bounds 3

(the low-end) (Umans (2003)).

Unfortunately, it is a challenging task to prove lower bounds for circuit
size in general, and the hardness vs. randomness paradigm has been useful in
obtaining unconditional derandomizations only in very limited computational
models (Nisan (1991); Viola (2007)). A natural question then arises: Do
we really need to prove circuit lower bounds (or equivalently construct PRGs)
in order to derandomize more general randomized complexity classes such as
BPP or AM? Several works investigated this question and showed that in
some settings the answer is yes, i.e., derandomization itself implies circuit lower
bounds!1

The first result of this flavor was given by Buhrman, Fortnow, and Thierauf
(1998) who showed that if the class MA is equal to NP then NEXP 6⊆ P/poly.2

Impagliazzo, Kabanets, and Wigderson (2002) significantly strengthened this
result by showing that if MA is contained in subexponential nondeterministic
time then NEXP 6⊆ P/poly. A similar conclusion follows from the deran-
domization of the class prBPP (of promise problems that can be solved in
probabilistic polynomial-time) since it implies the derandomization of the class
MA. Kabanets and Impagliazzo showed that if the problem of Polynomial
Identity Testing, which is known to be in BPP, is in SUBEXP, then either
NEXP 6⊂ P/poly or computing the Permanent cannot be done by polynomial-
size arithmetic circuit (Kabanets and Impagliazzo (2004)). Results of a similar
flavor were given in Santhanam (2007) Arvind and Mukhopadhyay (2008);
Dvir, Shpilka, and Yehudanoff (2009); Kinne, van Melkebeek, and Shaltiel
(2009).

While the lower bounds obtained from the derandomization assumptions
in the aforementioned results are not strong enough to obtain PRGs that im-

1By ‘derandomization’ we mean showing that a randomized class is contained in a deter-
ministic class in a non-trivial way. Note that PRGs are sufficient for derandomization but
are not known to be necessary. Furthermore, while PRGs directly yield circuit lower bounds,
it is not clear if derandomization does so in general. Very recently, Goldreich (2010) showed
that in the context of uniform derandomization, PRGs and derandomization are equivalent.
Informally, there exist PRGs that fool efficient (uniform) algorithms if and only if the class
prBPP can be fully derandomized on the average (i.e., it is infeasible for efficient algorithms
to generate instances on which the derandomization fails). Goldreich (2010) also shows an
equivalence between the full derandomization of prBPP on the worst case and the existence
of targeted PRGs. Roughly speaking, these are PRGs that are given as an auxiliary input
the description of the statistical test that needs to be fooled. In the context of this work, it
is important to point out that PRGs that fool uniform algorithms as well as targeted PRGs
do not seem to directly imply circuit lower bounds.

2This result is actually a corollary of their main result and is not mentioned in their paper.
It is explicitly stated in Impagliazzo, Kabanets, and Wigderson (2002) (see Remark 26).
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ply back the derandomization assumptions, they still suggest that the two-way
connections between hardness and pseudorandomness also extend to deran-
domization. A natural question is how general this phenomenon is? Is it as
general as the equivalence between circuit lower bounds and pseudorandomness
which holds in so many different settings? Can we extend it to other settings
of parameters or models of computation?

Note that all of the aforementioned results start with the assumption that a
weak derandomization is possible (placing some probabilistic class in a subex-
ponential class that does not require probability) and conclude in a lower bound
for superpolynomial-size (either Boolean or arithmetic) circuits. Thus the con-
nections hold in the low-end setting of parameters, and in particular, they only
imply PRGs with polynomial stretch. (We mention that some of the results do
not imply PRGs at all since they obtain lower bounds which are seemingly too
weak for the construction of PRGs). An exception is Kinne, van Melkebeek,
and Shaltiel (2009) who gave an alternative proof to Kabanets and Impagli-
azzo (2004) for which the parameters scale better. Thus they obtain results
also for parameter settings in between the low-end and the high-end. However,
their proof still falls short from proving a connection for the high-end (namely
an exponential-size lower bound from full derandomization), and furthermore,
their lower bounds, just like Kabanets and Impagliazzo (2004), are with respect
to arithmetic circuits and thus do not imply PRGs that fool Boolean circuits.
Furthermore, inspecting the proofs of all other results mentioned above, one
can see that they do not imply stronger lower bounds and PRGs even if full
derandomization is assumed.

1.2. Our Results. In this paper we extend the connections among deran-
domization, circuit lower bounds and PRGs to the high-end setting, by show-
ing that a full derandomization of a probabilistic class (and in fact a certain
task) implies exponential-size circuit lower bounds and PRGs with exponential
stretch. This is done in the context of derandomizing AM.

Arthur-Merlin games. The probabilistic class we consider is the promise
version of the class of languages that can be accepted by an Arthur-Merlin
game, denoted prAM.

Theorem 1.1. If every promise problem in prAM can be computed in de-
terministic polynomial-time with access to an NP oracle, then there exists a
language in ENP that requires deterministic circuits of size α2n/n for some
positive constant α and all but finitely many input lengths n.
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Recall that PNP denotes the class of languages that can be computed in de-
terministic polynomial-time with an NP oracle, and ENP its linear-exponential
analogue. See Section 2 for definitions of promise problems and of prAM.

Note that a full derandomization of prAM would mean that every problem in
it has a solution in the class NP. Our derandomization assumption is seemingly
weaker since NP∪coNP ⊆ PNP. Note also that the circuit lower bound achieved,
albeit only for deterministic circuits, is close to the maximal one, which is
Θ(2n/n) (Shannon (1949)). (On the other hand, we note that in order to
achieve a full derandomization of prAM we currently need lower bounds for
the class NE ∩ coNE with respect to nondeterministic circuits.)

Combining the results of Klivans and van Melkebeek (2002); Nisan and
Wigderson (1994) and Theorem 1.1 we get that the derandomization of the
class prAM implies the existence of PRGs with exponential stretch that can be
computed efficiently with an NP oracle, and fool deterministic Boolean circuits.

Theorem 1.1 is a step towards the converse of the hardness vs. randomness
tradeoffs of Miltersen and Vinodchandran (2005); Shaltiel and Umans (2005);
Umans (2003), namely that the existence of a language in the class ENP that
requires nondeterministic circuits of size 2Ω(n) implies the existence of a PRG
with exponential stretch that can be computed efficiently with an NP oracle,
and fools nondeterministic Boolean circuits. This in turn implies that prAM ⊆
PNP.3 Finally, we note that the lower bound in the conclusion of our theorem
does imply the inclusion prMA ⊆ PNP.

Approximate lower bound problem. Consider the following promise prob-
lem, which we call the approximate lower bound problem4: Given a nondeter-
ministic circuit, decide whether it accepts on a large fraction of its input settings
or on a significantly smaller fraction, where “large” and “significantly smaller”
are quantified by inputs to the problem, and where we are promised that one
of the two cases hold. (A formal statement of this problem is implicit in The-
orem 1.2 below.) This problem is complete for the class prAM (Goldwasser
and Sipser (1989)); hence the circuit lower bound in Theorem 1.1 follows by
derandomizing just this particular problem.

Now consider a special case of the approximate lower bound problem, where
the given circuit is deterministic instead of nondeterministic. It turns out that
derandomizing this seemingly easier problem suffices to yield the circuit lower

3We commit a common abuse of notation and mean by the inclusion prC1 ⊆ C2 that for
any promise problem Π ∈ prC1, there is some language in C2 that agrees with Π on the
promise. See Section 2 for details.

4also called “set lower bound protocol”, “Goldwasser-Sipser protocol” in some texts.
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bound in Theorem 1.1.

Theorem 1.2. Let C denote a Boolean circuit, and b an integer in binary.
If for some positive constant δ there is a language in PNP that contains all
instances (C, b) where |C−1(1)| ≥ b and does not contain any instances where
|C−1(1)| < δ · b, then there is a language in ENP that requires circuits of size
α2n/n for some positive constant α and all but finitely many input lengths n.

Approximate counting. A close relative of the approximate lower bound
problem is the problem of computing an estimate on the number of inputs
accepted by a (deterministic) circuit. Specifically, given (C, η), the problem is
to output a number c such that (1− η)|C−1(1)| ≤ c ≤ (1 + η)|C−1(1)|.

The result of Shaltiel and Umans (2006) implies that if ENP requires
exponential-size nondeterministic circuits, then approximate counting can be
done in time polynomial in 1/η and in the size of C, when given access to an
NP oracle. Theorem 1.2 implies a complement to this, namely that if approxi-
mate counting can be computed as stated, then ENP requires exponential-size
(albeit deterministic) circuits. This follows by setting δ < (1 − η)/(1 + η); in
this case the approximation with parameter η is enough to distinguish the two
cases of Theorem 1.2 with parameter δ.

Parameterization. In fact we show a yet stronger result, of which Theo-
rem 1.2 is a special case. Namely, we show a parameterized version of Theo-
rem 1.2 that reveals a randomness vs. hardness tradeoff for the approximate
lower bound problem.

Theorem 1.3. Let t, 1/δ, and s be functions such that t and 1/δ are mono-
tone, 1/δ and s are constructible, and m/δ(m) = O(2n) whenever m(n) =
O(s(n) log s(n)). Let C denote a Boolean circuit on m inputs, and b an in-
teger in binary. If there is a language in DTIME(t(n))NP that contains all
instances (C, b) where |C−1(1)| ≥ b and does not contain any instances where
|C−1(1)| < δ(m) · b, then there is a language in DTIME(t′(n))NP that requires
circuits of size s(n) for all but finitely many input lengths n, where

t′(n) = t

(
(s(n) · 1

δ(O(s(n) log s(n)))
)O(1)

)
.

Theorem 1.3 gives the following interesting instantiations that yield a hard
language in ENP.
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Corollary 1.4. For each combination of the parameters t, δ, and s in the
table below, under the hypothesis of Theorem 1.3, there is a language in ENP

that requires circuits of size s(n) for all but finitely many input lengths n.

t(n) δ(n) s(n)

nO(1) Ω(1) Ω(2n/n)

2(log n)O(1)
1/2(log n)O(1)

2nΩ(1)

2no(1)
1/nO(1) nω(1)

Note that Theorem 1.2 follows from the first line of the table.

1.3. Our Techniques. We present two approaches to establish results like
ours. The first one is rather elementary, yet it yields the full strength of Theo-
rem 1.1, Theorem 1.2, and Theorem 1.3. The second one is more involved, as
it builds on a number of earlier works, and yields quantitatively weaker results.
We nevertheless include the second approach as it may be useful in obtaining
circuit lower bounds in other contexts. The second approach was discovered
earlier and appears in the preliminary version of this paper, Gutfreund and
Kawachi (2010). The first approach was reported in Aaronson, Aydınlıog̃lu,
Buhrman, Hitchcock, and van Melkebeek (2010).

Underlying both of our approaches are ideas that date back to Kannan
(1982) who used it to prove unconditional circuit lower bounds. Consider the
problem of computing, within the polynomial-time hierarchy, a language L
that is hard for circuits of size s := nk for some k > 0 (for all but finitely many
lengths n). By a counting argument, the number of size-s circuits is less than
the number of strings of length ` := s1+Ω(1). Hence, if we view each length-
` string as the truth table of a function on log ` bits (assuming wlog that `
is a power of 2), we see that the task of computing a hard language L on n
bits can be accomplished by first finding the truth table of a hard language
L′ on log ` = O(log n) bits, then trivially extending this truth table (say, by
padding with zeroes) so that it corresponds to a function L on n bits, and
finally returning the entry in the truth table that corresponds to the given
input. Now, observe that it is a coNP task to decide whether a given truth
table of length ` is hard (i.e., whether the truth table corresponds to a language
L′ that is hard for size-s circuits). Observe further that it is a ΣP

2 task to decide
whether a given string is the prefix of some length-` truth table that is hard.
It follows that by doing a binary search we can find the lexicographically least
truth table of a hard L′, hence of a hard L, in PΣP

2 .
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The argument in the preceding paragraph gives fixed-polynomial-size cir-
cuit lower bounds in the polynomial-time hierarchy. To prove exponential-size
circuit lower bounds in the exponential-time hierarchy, one runs the above ar-
gument with s := 2Θ(n) instead of s := nk. Thus, one gets a function in EΣP

2

that requires circuits of linear-exponential size. Though quite simple, this is
currently (as it has been for almost 30 years) the best known exponential-size
lower bound.

Both our proofs essentially show that in order to find exponentially hard
truth-tables we can replace the ΣP

2 oracle in the above argument with a prAM
oracle. The derandomization hypothesis then implies a function in ENP that
requires circuits of linear-exponential size. Note that prAM ⊆ ΠP

2 (Fürer,
Goldreich, Mansour, Sipser, and Zachos (1989)) (and clearly oracle access to
ΣP

2 is equivalent to oracle access to ΠP
2 ), so our oracle is certainly not stronger

than the oracle in Kannan’s proof, and is widely believed to be weaker. Indeed
our result implies the lower bound for EΣP

2 . In Section 5 we explain why we
nevertheless do not prove a new explicit lower bound.

Our two proofs differ in the way they substitute the ΣP
2 oracle with a prAM

oracle. In our first (i.e., elementary) proof, instead of using a ΣP
2 oracle for

finding the lexicographically least truth table that is hard via binary search,
we use a prAM oracle for finding some hard truth table via approximate halving.
Specifically, we construct a truth table by successively setting its the next bit so
as to eliminate a significant fraction of those circuits that agree with the truth
table constructed thus far. We accomplish this by using the prAM oracle to
get an approximate count on the number of circuits that would be eliminated
in case the next bit in the truth table is set to zero or to one. Approximate
counting ensures that at each iteration, although we may not eliminate half of
the remaining circuits (as we could if we had an oracle that did exact counting),
we do eliminate a significant fraction of them. Hence we build a hard truth
table fairly quickly.

Our alternate proof builds on yet another strategy of Kannan (1982) who
used it to improve his above-described lower bound on fixed-polynomial-size
circuits. The idea is to use the well-known result of Karp and Lipton (1980)
that if SAT is computable by polynomial size circuits (for almost all input
lengths), then PH, the polynomial-time hierarchy, collapses to ΣP

2 . Specifically,
consider two cases: SAT has circuits of size s := nk for some k > 0, or not.
In the latter case we can just take L = SAT, since the language SAT itself
has the desired hardness (albeit only for infinitely many input lengths n rather
than all but finitely many). In the former case, due to the collapse of PH, the
binary search for finding a hard truth table is now computable in ΣP

2 rather
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than PΣP
2 . It follows that for every k > 0 there is a language in ΣP

2 that is hard
for size-nk circuits. Note that it does not seem possible with this approach to
achieve lower bounds that hold on almost all input lengths.

This argument is fruitful in obtaining fixed-polynomial size circuit lower
bounds further down in PH, because it can leverage any improvement to the
Karp and Lipton (1980) result that gives a stronger collapse consequence of
PH. For example, the current strongest consequence of SAT having polynomial
size circuits, due to Cai (2007), is that PH collapses to SP

2 . Plugging this result
into the preceding argument immediately yields a hard language in SP

2 instead
of in ΣP

2 .

Despite its usefulness in obtaining fixed-polynomial size circuit lower bounds,
it is not clear how this argument can be scaled up to give exponential size cir-
cuit lower bounds. Specifically, the problem lies in the case distinction on the
hardness of SAT. For example, if we replace s := nk with s := 2Θ(n), then the
case that SAT is hard for size-s circuits scales up fine, but then we do not know
how to handle the first case that SAT has size-s circuits. In particular, we do
not know of any Karp-Lipton style collapse5 with that setting of s. We may
attempt to replace SAT with a seemingly harder language, say some language
in a class C, where C is contained in the class for which we want to show a
lower bound. Unfortunately this issue cannot be fixed this way; for otherwise
we would not have the current gap between the known super-polynomial size
lower bounds (which hold with respect to classes that are contained in the
second level, namely MA-EXP (Buhrman, Fortnow, and Thierauf (1998))),
and the known exponential-size lower bounds (which only hold with respect
to classes that are in the third level of the hierarchy, namely EΣP

2 (Kannan
(1982))). Indeed, it was argued by Miltersen, Vinodchandran, and Watanabe
(1999) that Karp-Lipton style collapses that are needed for Kannan’s strat-
egy hold with respect to size functions up to half-exponential (a function s is
half-exponential if s(s(n)) ∈ 2Θ(n)) but do not seem to carry over to larger size
bounds, to 2Θ(n) in particular.

The main contribution of our alternate proof is a way to scale up this
easy/hard case analysis and obtain the desired exponential circuit lower bounds.
For this we exploit a connection with learning theory. We refer to Section 4
for more intuition and details. We believe that this approach may be useful in
scaling fixed-polynomial-size circuit lower bounds to exponential level.

5Results that show the containment of some uniform class in a non-uniform class imply
a collapse of high uniform classes into lower classes are called Karp-Lipton style collapses
(after Karp and Lipton (1980) who were the first to show such a result).



10 Aydınlıog̃lu et al.

2. Basic Notions and Notation

For a Boolean function f : {0, 1}∗ → {0, 1}, we denote by fn the restriction
of f to instances of length n. We use “language” and “Boolean function”
interchangeably. For a (possibly infinite) family of circuits C we denote by Cn

the circuits in C with exactly n input gates.
For an integer n > 0, we denote by [n] the set {1, . . . , n}. For a string

s ∈ {0, 1}∗ we denote by |s| the length of s. For two strings s, t ∈ {0, 1}∗ we
denote by s ◦ t their concatenation.

2.1. Complexity Classes. We assume that the reader is familiar with stan-
dard complexity classes such as P, NP, E etc. For a class of (oracle-aided)
algorithms A and a class of functions F we denote by AF the class of functions
that are computable by some algorithm in A that is given oracle (i.e., unit
cost) access to a function in F .

Often when we describe algorithms that use as oracle some function in a
class F it is convenient to actually assume that the algorithm has unit cost
access to several (constant number of) functions f1, . . . , fc all in F . We can
then think of the algorithm having access to a single function in F by binding
the functions to a single function f(i, x) = fi(x) for 1 ≤ i ≤ c. This holds
whenever the function class is closed under such composition, which is always
the case in this paper.

For a size function s : N → N, we denote by SIZE(s(n)) the class of lan-
guages computable by s(n)-size n-input Boolean circuits, where we assume the
standard bounded fan-in model; the circuits consist of 2-input AND and OR
gates, and 1-input NOT gates. We measure the size of a circuit by the number
of its gates.

We recall a standard fact regarding circuit descriptions that we use in sub-
sequent sections. Every s(n)-size n-input Boolean circuit can be described by a
string of length Θ(s(n) log s(n)). Precisely, such a circuit can be described by a
sequence of s(n) triples, where each triple describes a gate with O(1)+2 log s(n)
bits: a constant number of bits for the gate type, log s(n) bits for identifying
the first input of the gate, and another log s(n) bits for the second input, where
a gate is identified by the position of the triple describing it. It follows that
3s(n) log s(n) bits suffice to describe all n-input Boolean circuits of s(n)-size.
We interpret each string of length 3s(n) log s(n) as the description of some such
circuit. We note that from its description such a circuit can be simulated in
time poly(s(n)).

For more details on complexity classes, see textbooks of Goldreich (2008)
and Arora and Barak (2009).
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2.2. Promise Problems. The notion of promise problems were introduced
by Even, Selman, and Yacobi (1984); see the survey by Goldreich (2005).
Recall that a promise problem Π is defined by two disjoint sets ΠY ⊆ {0, 1}∗
which we call the ‘yes’ instances of Π, and ΠN ⊆ {0, 1}∗ which we call the ‘no’
instances of Π. A function f : {0, 1}∗ → {0, 1} agrees with a promise problem
Π, if f(x) = 1 for every x ∈ ΠY , f(x) = 0 for every x ∈ ΠN and f(x) can take
any value in {0, 1} if x 6∈ ΠY ∪ ΠN .

For a class of algorithms A and a class of promise problems F , a function
g : {0, 1}∗ → {0, 1} is said to be in the class AF , if there exists an algorithm
A ∈ A and a promise problem Π ∈ F , such that when A is given oracle access
to any function f that agrees with Π, it computes the function g. In other
words, while A may ask queries which are not in ΠY ∪ ΠN and hence receive
arbitrary answers, it must compute the same function g regardless of the values
of these arbitrary answers.

We take a fairly standard, though formally inaccurate, point of view and say
that a class of promise problems F is contained in a class of Boolean functions
C, if for every promise problem Π ∈ F , there exists a function in C which agrees
with Π.6

The class prAM contains all the promise problems for which there is an
Arthur-Merlin protocol whose completeness holds with respect to all the ‘yes’
instances and the soundness holds with respect to all the ‘no’ instances. The
protocol may behave arbitrarily on instances which are not in ΠY ∪ ΠN . For-
mally, prAM is defined as follows.

Definition 2.1. We say that a promise problem Π is in the class prAM if
there is a polynomial-time computable relation R(·, ·, ·) such that the following
holds:

◦ Completeness: For every x ∈ ΠY , Prr[∃y such that R(x, y, r) = 1] ≥
2/3

◦ Soundness: For every x ∈ ΠN , Prr[∃y such that R(x, y, r) = 1] ≤ 1/3,

where |r| = |y| = poly(|x|).
It is well known (Babai and Moran (1988); Goldwasser and Sipser (1989))

that the definition above is equivalent to the class of all the promise problems

6Strictly speaking, a promise problem is a partial function that is undefined on the out-
of-promise instances. We view such a problem as a member of the language class C if it can
be extended to a (total) function in C.
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that have interactive protocols (in the model of Goldwasser, Micali, and Rack-
off (1989)) with a constant number of rounds between an all-powerful prover
(Merlin) and a probabilistic polynomial-time verifier (Arthur).

3. Elementary Approach

In this section we present an elementary proof of our results. We first describe
the intuition for the proof of Theorem 1.2 and then provide the formal proof
for the fully parameterized version, Theorem 1.3.

3.1. Proof Idea. As mentioned in Section 1.3, the idea behind the main
proof is to construct a language that requires large circuits by setting the
prefix of its characteristic sequence so as to quickly diagonalize against all
small circuits. More specifically, we mimic the process of successively setting
the next bit of the characteristic sequence to the minority vote of the circuits
of size α2n/n that are consistent with the sequence constructed thus far. This
ideal process would reduce the number of consistent circuits by at least half in
each step, implying that we’d be done after O(α2n) steps.

Now, let A be a language in PNP that solves the promise problem described
in the statement of Theorem 1.2. Using A as an oracle, we can mimic the
above ideal process and guarantee that we reduce the number of consistent
circuits by some constant factor β < 1, where β depends on δ. To do so, it
suffices to approximate the number of circuits consistent with the sequence
thus far extended with a zero, do the same for the extension with a one, and
select the extension that gives the smaller estimate. This approximation can
be obtained by a binary search on the approximate number b, by calling A with
an input C that embodies the characteristic sequence so far. The process ends
after O(α2n/ log(1/β)) steps, which is less than 2n for sufficiently small α and
sufficiently large n. Since A lies in PNP, the resulting process yields a language
in ENP that has no circuits of size α2n/n for all but finitely many input lengths
n.

3.2. Formal Proof. We now fill in the details and give a formal proof of
Theorem 1.3.

Let s(n) ≥ n denote the circuit lower bound we are shooting for, i.e., we
want to construct a language L that requires circuits of size s(n) for all but
finitely many input lengths n.

Let A denote a language that solves the promise problem given in the state-
ment of Theorem 1.3. For a given Boolean circuit C on m inputs and an in-
teger b in binary, A contains (C, b) if |C−1(1)| ≥ b and does not contain (C, b)
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if |C−1(1)| < δ(m) · b. In the middle case where |C−1(1)| ∈ [δ(m) · b, b), the
membership of (C, b) to A can be arbitrary.

The circuits C we supply to A take as input the description of a circuit D
of size s(n) on n inputs. Thus, C takes m = O(s(n) log s(n)) inputs.

We construct L iteratively, where in iteration i = 0, 1, . . . , we determine χi,
the ith symbol of the characteristic string χ of L. To explain iteration i we
denote by Si the set of circuits of size s(n) on n inputs that agree with χ up
to its ith symbol, i.e., a circuit D is in Si iff for j = 0, . . . , i − 1, D outputs
χj when given as input the n-bit binary encoding of integer j. In iteration i
we first tentatively set χi to 0 and use A to obtain an estimate σ0 on the size
of Si+1. Then we set χi to 1 and obtain an estimate σ1. We finalize χi to the
value c ∈ {0, 1} such that σc = min(σ0, σ1) (say we set c = 0 in case of a tie).

To estimate |Si+1|, first we construct a circuit C that recognizes Si+1. The
circuit C takes as input a binary string of length m that is the description of
a size s(n) circuit D on n inputs, and returns 1 iff D ∈ Si+1. More precisely,
C contains as hardcode the characteristic string χ constructed thus far and
simulates its input D on inputs j = 0, . . . , i, and accepts iff D agrees with
χ for all j. Next, we run a binary search for the largest integer b∗ such that
(C, b∗) ∈ A. Note that (C, 0) ∈ A so b∗ exists. The binary search returns a
value b̃ such that (i) (C, b̃) ∈ A and (ii) (C, b̃ + 1) 6∈ A. As A(C, ·) may not be
perfectly monotone, b̃ may differ from b∗ but the specification of A guarantees
that |C−1(1)| ≥ δ(m) · b̃ (because of (i)) and |C−1(1)| < b̃ + 1 (because of (ii)),
so our estimate b̃ satisfies

|Si+1| ≤ b̃ ≤ |Si+1|/δ(m).(3.1)

At the end of iteration i, if the smaller estimate σc in iteration i was 0 then
by (3.1) we conclude that the diagonalization is complete and we terminate the
iterations. Finally, to decide whether x ∈ {0, 1}n belongs to L, we interpret x
as an integer and accept if x is less than the length of χ and the xth symbol of
χ is 1; we reject x otherwise. This completes the construction of L.

For the construction to work, we need to make sure that the diagonalization
is completed by the time we exhaust the 2n inputs of length n. Consider the
number of circuits eliminated in round i. According to our estimate this number
is σ¬c, but by (3.1) it may actually be as little as δ(m)·σ¬c. Since the total num-
ber of circuits under consideration at round i is, again by (3.1), at most 2σ¬c,
it follows that at least a δ(m)/2 fraction of those circuits are eliminated during
round i. Thus, |Si| ≤ (1−δ(m)/2)i·|S0| ≤ exp(−iδ(m)/2)·2m. The latter quan-
tity is less than 1 for i > 2 ln(2)m/δ(m). So, as long as 2 ln(2)m/δ(m) < 2n, we
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can complete the diagonalization process as required. Note that the condition
is met if m/δ(m) = O(2n) for every m(n) = O(s(n) log s(n)).

Let us now analyze the complexity of the resulting language L. The circuits
C used in the ith step can be constructed in time poly(i, s(n)). The binary
search in each step requires at most m calls to A, as b∗ ranges up to 2m.
Assuming A can be decided in time t(N) on inputs of length N (when given
access to an oracle for NP), the amount of time for the ith step is O(m ·
t(poly(i, s(n))) (when given access to NP). By the previous paragraph, the
number of steps is O(m/δ(m)). Hence, given access to NP, the amount of time
over all steps is

O

(
m2

δ(m)
· t(poly(

m

δ(m)
, s(n)))

)

= O

(
t(poly(s(n),

1

δ(O(s(n) log s(n)))
))

)
,(3.2)

where we assume that t(N) and 1/δ(m) are monotone and, without loss of gen-
erality, that t(N) ≥ N . If s(n) and 1/δ(m) are constructible as well, (3.2) also
bounds the overall time complexity of L. We have thus proved Theorem 1.3.

4. Learning-Based Approach

In this section we present an alternate, learning-based approach to results like
Theorem 1.1, Theorem 1.2, and Theorem 1.3.

Using this approach we do not know how to achieve the same quantitative
strength as using the approach from the previous section. Nevertheless, as
explained in Section 1.3, we believe that the learning-based approach has fu-
ture potential for scaling fixed-polynomial circuit lower bounds to exponential
circuit lower bounds.

Given the above, for simplicity of exposition, we do not attempt to obtain
the strongest quantitative results the learning-based approach can give, and we
only focus on the setting of Theorem 1.1. In particular, we prove the following
result:

Theorem 4.1. If every promise problem in prAM can be computed in de-
terministic polynomial-time with access to an NP oracle then there exists a
language in ENP that requires circuits of size 2εn for some positive constant ε
and infinitely many input lengths n.

Note that Theorem 4.1 is weaker than Theorem 1.1 because the circuit
lower bound is only 2εn for some positive ε rather than Θ(2n/n), and because
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the lower bound only holds infinitely often rather than almost everywhere. The
approach in this section can be strengthened to yield a circuit lower bound of
2εn for every positive constant ε < 1 and infinitely many input lenghts; however,
it does not seem to yield a circuit lower bound of Ω(2n/n) as in Theorem 1.1,
neither does it seem possible with this approach to achieve a lower bound that
holds almost everywhere. These limitations seem to be inherent in Kannan’s
argument on which our learning-based approach is based (see Section 1.3).

We start by describing the intuition. We provide the formal proof in the
subsequent subsections.

4.1. Proof Idea. As we described in the Section 1.3, the approach of Kannan
(1982) for proving fixed-polynomial-size circuit lower bounds, based on Karp-
Lipton style collapses, does not seem to scale for proving exponential-size lower
bounds. In particular, it seems that one needs a Karp-Lipton style collapse from
the assumption that some exponential-time class has exponential-size circuits.
Such results are currently not known.

Thus in order to prove Theorem 4.1 we need a different strategy. Somewhat
surprisingly, our proof also goes via an easy/hard case analysis but not with
respect to the classes that we are interested in, namely ENP and exponential-
size circuits, but rather NP and fixed polynomial-size circuits. Consider two
cases, either SAT can be computed by circuits of size, say n10, or not. In the
former case we are in a good position because we can use a Karp-Lipton style
collapse. The result of Chakaravarthy and Roy (2008) shows that if SAT has
polynomial-size circuits then PH collapses to the class PprAM, and therefore by
the derandomization assumption to PNP. From here we proceed as in Kannan
(1982). Namely, we can find in deterministic polynomial-time with access to an
NP oracle a truth-table of a function on O(log n) bits that is hard for circuits
of size poly(n). The exponential-size lower bound now follows by translation.

The second case, in which SAT does not have circuits of size n10, is more
interesting. This is because at a first glance, the (fixed) polynomial-size lower
bound for SAT seems to have nothing to do with exponential-size lower bounds.
We show how to scale this fixed polynomial-size lower bound to the exponential
level, and we do that via a connection to computational learning theory. We
believe that this part of the proof is of independent interest.

Let us briefly discuss some notions from computational learning theory.
Let s(n), s′(n) be size functions (where s′(n) ≥ s(n)). An algorithm A exactly
learns a Boolean function f with respect to the concept class SIZE(s) and
hypothesis class SIZE(s′), if the following holds: if f can be computed by
circuits of size s(n), then A, on input 1n, outputs a circuit of size s′(n) that
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computes f at input length n (i.e., A has to learn a circuit for f from the
hypothesis class but not necessarily from the concept class). Clearly A has to
receive some information (in the form of an oracle) about f to achieve this
task. Several such oracles were considered in the literature, the most natural
one being an oracle to f itself.

A classic result in computational learning theory by Bshouty, Cleve, Gavaldà,
Kannan, and Tamon (1996) is that there is an algorithm that exactly learns
SAT with respect to the concept class SIZE(nk) and hypothesis class SIZE(nk+3)
(for any k > 1). The algorithm runs in probabilistic expected polynomial-time
with access to a SAT oracle. Of course, we do not know if SAT has polynomial-
size circuits. Indeed in the case that we consider, SAT cannot be computed
by n10-size circuits. So how does the algorithm of Bshouty, Cleve, Gavaldà,
Kannan, and Tamon (1996) behave when SAT is not even in the hypothesis
class SIZE(nk+3)? Fortnow, Pavan, and Sengupta (2008) observed that in this
case the algorithm outputs a poly(n)-long list of SAT instances such that every
circuit of size nk fails to compute correctly the SAT-value of at least one of
them.7 We call this a list of counterexamples.

We proceed in two steps. First, in section Section 4.2 we show that if there
is a deterministic learning algorithm that outputs a polynomially-long list of
counterexamples, then there is an explicit function that requires exponentially
large circuits (see Lemma 4.3). The complexity of computing this function is
directly related to the complexity of the learning algorithm. In particular, if the
algorithm runs in deterministic polynomial-time with access to an NP oracle,
then there is a function in ENP that requires exponentially large circuits. Next,
in section Section 4.3 we show (in Theorem 4.5), based on ideas from Bshouty,
Cleve, Gavaldà, Kannan, and Tamon (1996); Chakaravarthy and Roy (2008);
Fortnow, Pavan, and Sengupta (2008), that there is a deterministic algorithm
that uses an oracle to prAM for learning counterexamples (recall that the result
of Fortnow, Pavan, and Sengupta (2008) only gives a randomized algorithm,
so it is not good for us). By the hypothesis of Theorem 4.1, we can replace the
prAM oracle with an NP oracle and then the lower bound follows in Section 4.4.

4.2. Learning Counterexamples Implies Exponential-Size Lower Bounds.
In this section we show the connection between the problem of learning coun-
terexamples for SAT and exponential-size lower bounds. First, we formally
define the problem of learning counterexamples.

7We mention that a slightly stronger statement was later given by Atserias (2006).
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Definition 4.2. Let f : {0, 1}∗ → {0, 1} be a function, and C a family of
Boolean circuits such that f /∈ C. We say that an algorithm A learns ` = `(n)
counterexamples for f with respect to the concept class C, if for every n for
which fn /∈ Cn, on input 1n, the algorithm outputs a list of at most ` strings
x1, . . . , x` of n-bit length such that for every circuit C ∈ Cn, there exists 1 ≤
i ≤ ` such that C(xi) 6= f(xi).

The following lemma states that deterministic learning of counterexamples
for SAT implies exponential-size lower bounds.

Lemma 4.3. Suppose that for some c > k > 4 there is a deterministic algo-
rithm A with access to an NP oracle that runs in time poly(n), such that A
learns a list of nc counterexamples for SATn with respect to the concept class
SIZE(nk), for infinitely many n ∈ N. Then there is a constant δ > 0 (that
depends only on k and c), and a language in the class ENP that cannot be
computed by circuits of size 2δn, for infinitely many input lengths n.

Before we give the formal proof we briefly present the intuition. By the
hypothesis, the algorithm A generates, in polynomial-time with access to an
NP oracle, a list of counterexamples (φ1, ..., φ`) for some polynomial `(n) :=
nc > nk. It holds that every nk-size circuit fails on at least one instance in the
list. It is tempting to take the function f(i) := SAT(φi) as our hard function.
However, this does not quite work. Since we cannot assume any particular
property regarding the order of the φi’s, it is hypothetically possible that the
location of a formula in the list determines its satisfiability (e.g., every even
formula in the list is satisfiable and every odd is unsatisfiable). Furthermore,
since ` > nk, a circuit of size nk cannot necessarily determine the index of
a formula from the formula itself, thus it is possible that the list is indeed
hard for circuits of size nk but f itself is easy. Instead we show that if f is
easy for circuits of size nk then the hardness of the counterexamples stems
from the fact that it is hard to generate their description (under some canon-
ical representation of Boolean formulas). That is, we show that the function
h(i, j) = [the j-th bit in the description of φi] is sufficiently hard for Boolean
circuits.

More precisely, we do a case analysis. If an indexing function g: g(φi) = i
is easy, then we can prove that f(i) = SAT(φi) is hard since otherwise a small
circuit can compute all the SAT-values of the counterexamples φ1, ..., φ` using
small circuits for f and g. This contradicts the hardness of the counterexam-
ples. Otherwise, we can prove that h defined above is hard since, if h is easy,
a small circuit for h can be used to compute g, which contradicts the hardness
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of g.
Let us proceed with the proof.

Proof. Fix a sufficiently large n so that no nk-size circuit solves SATn. In
this case, A outputs a list of `(n) counterexamples. Let (φ1, ..., φ`) be the list
sorted in lexicographical order so that φ1 < · · · < φ`. Define m := dlog `(n)e ≤
dc log ne.

In the sequel we define several functions on different input lengths. A
superscript denotes the input length of each function. Consider the following
function gn : {0, 1}n → {0, 1}m defined as gn(φ) = i if φ = φi for some
1 ≤ i ≤ `, and gn(φ) = 0 otherwise. We consider two cases, whether (I) an
nk−1-size circuit can compute gn or (II) not.

Case (I): In this case, we prove that no circuit of size nk−1 ≥ 2
k−1

c
(m−1) can

compute the function fm(i) = SAT(φi). For contradiction, we assume that
some nk−1-size circuit Cf can compute fm. By the hypothesis of Case (I), we
have an nk−1-size circuit Cg that computes gn. Using Cf and Cg, we can obtain
an nk-size circuit C that computes the SAT-values of all the counterexamples
{φ1, ..., φ`}, which contradicts the hardness of the counterexamples. The circuit
C is constructed as follows. Let φ be a given instance of n-bit length.

1. Run Cg(φ). If the output is 0, then output 0 and quit. Otherwise let
i ∈ [`] be the output of Cg(φ).

2. Output Cf (i).

Obviously, the size of this circuit C is at most 3nk−1 ≤ nk for a sufficiently
large n and it correctly computes SAT(φi) for any i.

Moreover, the function f can be computed in poly(n) = 2O(m) time using
an NP oracle as follows. Let i ∈ {0, 1}m be an input.

1. Run A and lexicographically sort the output formulas. The resulting list
is (φ1, ..., φ`).

2. Invoke the NP oracle to determine if φi ∈ SAT, and output the result.

Therefore, fm is hard against 2
k−1

c
(m−1)-size circuits and computable in 2O(m)

time using an NP oracle.
Case (II): In this case, we prove that no nk−3-size circuit can compute yet an-

other function h defined as hm′
(i, j) = [the j-th bit in the description of φi ∈ {0, 1}n],

where m′ := m + dlog ne = dlog `(n)e + dlog ne = Θ(log n). For contradiction,
we assume that hm′

can be computed by an nk−3-size circuit Ch. Then, we can
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compute gn by a small circuit C ′ that uses Ch, contradicting the hardness of
gn, i.e., the hypothesis for Case (II).

The circuit C ′ computes gn as follows. Let φ be a given SAT instance of
n-bit length.

1. Perform a binary search on the list (φ1, . . . , φ`) to find the index i such
that φ = φi, if φ is in the list. Each comparison in the binary search,
against the formula with index i′, is done by computing φi′ = (Ch(i

′, 1), . . . , Ch(i
′, n))

and checking whether φ is lexicographically equal, larger or smaller than
φi′ .

2. Output the obtained index i if the binary search succeeds, otherwise
output 0.

The binary search can be implemented by a circuit of size O(|Ch|n log `) =
O(nk−2 log n). Therefore, the size of C ′ is at most nk−1, which contradicts the
hardness of gn. Also, hm′

is computable in poly(n) = 2O(m′) time using an NP
oracle as follows. Let (i, j) ∈ {0, 1}m′

be a given instance.

1. Run A and sort the output formulas. The resulting list is (φ1, ..., φ`).

2. Output the j-th bit of φi.

Therefore, hm′
is hard against nk−3 ≥ 2

k−3
c+1

(m′−2)-size circuits and computable
in poly(n) = 2O(m′) time using an NP oracle.

We showed that either fm or hm′
has the required hardness for a fixed

input length. By setting δ := k−3
c+1

, we get that either f or h is a hard function

for circuits of size 2δr for infinitely many r ∈ N, while both functions are
computable in deterministic time 2O(r) with access to an NP oracle. ¤

4.3. Learning Counterexamples with an Oracle to Promise AM. In
this section we show how to deterministically learn counterexamples for SAT
with a prAM oracle. We first give an overview and then present the proof.

4.3.1. Overview. Our starting point is a result by Fortnow, Pavan, and
Sengupta (2008), which essentially states that if SAT does not have size-nk+3

circuits, then there is a short list of counterexamples for every size-nk circuit.
More precisely, their result is that if SAT is hard for size-nk+3 circuits, then
there is a list of satisfiable formulae L = (φ1, . . . φ`), ` = poly(n), such that
every size-nk circuit C fails on some φ in L, where by “fail” we mean that C
cannot be used to find a satisfying assignment for φ. (Note that if C were
a circuit for SAT then it would not fail on φ; in particular we could use C
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to find the lexicographically least satisfying assignment for φ via downwards
self-reducibility.)

In proving their result, Fortnow, Pavan, and Sengupta (2008) gave a prob-
abilistic argument showing that given any collection of size-nk circuits, there is
a satisfiable formula φ such that at least a third of the collection fail on it. This
is our first ingredient in obtaining a deterministic oracle algorithm for finding
counterexamples.

Our second ingredient is based on ideas of Chakaravarthy and Roy (2008),
who show a deterministic polynomial time algorithm with oracle access to
prAM for the task of finding a small circuit for SAT, assuming such a cir-
cuit exists. They do this in iterations, where the outcome of iteration i is a
circuit Ci that fails on only a fraction of the formulas that previously found
circuits C1, . . . , Ci−1 all fail on. Also obtained in iteration i is an integer γi,
which is an estimate for the number of formulas that the circuits C1, . . . , Ci all
fail on.

We adapt this algorithm to our setting, roughly speaking, by swapping
circuits with formulas. That is, instead of trying to find a circuit Ci that fails
on as few of the remaining formulas as possible, in each iteration we try to find
a formula φi that causes to fail as many of the remaining circuits as possible.
Our first ingredient ensures that within poly(n) iterations we end up with a
list L on which every circuit fails.

Once we obtain L, we turn it into a list of counterexamples by modestly
growing the list. To be specific, for each φ ∈ L we add to L all formulas φ′ that
would be queried if one was using a circuit for SAT to find the lexicographically
least satisfying assignment for φ.

The full proof in the next subsection is laid out as follows. We begin with
the Goldwasser and Sipser (1989) result that shows that the approximate
lower bound problem (mentioned in Section 1.2) is in prAM; we state this in
Lemma 4.4 and later use it several times. We state the main result of this
section, an algorithm for learning counterexamples, in Theorem 4.5, and prove
it throughout the rest of the section. We present the above-mentioned first in-
gredient in Lemma 4.8; the second ingredient makes up the remaining material.
Claim 4.11 together with Claim 4.12 describes the first task of each iteration,
namely finding φi as described above. The second task of each iteration, namely
finding γi, is explained in Claim 4.13.

4.3.2. Proof. We will need an Arthur-Merlin protocol for the approximate
lower bound problem mentioned in Section 1.2. Such a protocol was given by
Goldwasser and Sipser (1989). The formulation that we use is taken from
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Bogdanov and Trevisan (2006).

Lemma 4.4. (Bogdanov and Trevisan (2006); Goldwasser and Sipser (1989))
Let C denote the description of a Boolean circuit, a an integer in binary, ε a
number in the range [0, 1] given as ε−1 in unary. Define the following promise
problem Π:

◦ Yes instances: (C, a, ε) ∈ ΠY if |C−1(1)| ≥ a.
◦ No instances: (C, a, ε) ∈ ΠN if |C−1(1)| ≤ (1− ε)a.

Π ∈ prAM.

Proof (Sketch). The protocol works as follows. Arthur sends to Merlin a
random hash function h : {0, 1}m → {0, 1}k, where m is the input length of C
and k ≈ log a. Merlin sends Arthur a string x that satisfies h(x) = 0 · · · 0 and
C(x) = 1, and Arthur verifies that this is indeed the case. If |C−1(1)| ≥ a then
Merlin can find such an x with high probability. On the other hand, if |C−1(1)|
is much smaller than a, then there is no such x with high probability. ¤

We now present the deterministic algorithm that learns counterexamples
for SAT with a prAM oracle.

Theorem 4.5. Suppose that for some k > 4, SAT 6∈ SIZE(nk+3). There
is a promise problem Γ ∈ prAM and a polynomial-time deterministic oracle
algorithm A, such that for every function f : {0, 1}∗ → {0, 1} that agrees with
Γ, for every input length n for which SATn does not have circuits of size nk+3,
Af learns O(nk+1) counterexamples for SATn with respect to the concept class
SIZE(nk).

Proof. Let us first set up the following notation. For a Boolean circuit
C on n inputs, define the circuit S(C) that on an input formula φ of length
n, attempts to find the lexicographic first satisfying assignment for φ, via the
downward self-reducibility property of SAT using C to solve the SAT instances
along the search path. If S(C) finds a satisfying assignment it outputs the
assignment and otherwise it outputs 0. From now on we fix k to be an arbitrary
integer greater than 4. For a list L of satisfiable formulas, we consider the set
of circuits that are consistent with L, in the following sense.
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Definition 4.6. For a list of satisfiable formulas L = (φ1, . . . φ`) each of de-
scription length n, we denote by TL the set of nk-size circuits that are consistent
with L in the following sense: C ∈ TL if and only if S(C) finds a satisfying
assignment for every φj ∈ L.

With this notation we can now describe the learning algorithm. Below we
will define several promise problems in prAM and allow the algorithm oracle
access to all of them (or to functions that agree with them to be more accurate).
We can then combine them into a single promise problem in prAM as discussed
in Section 2.

The algorithm has two stages. The first stage runs in iterations. Every
iteration step i, passes to step i + 1 a list Li of satisfiable formulas φ1, . . . , φi

each of description length n, as well as a number 1 ≤ γi ≤ 23nk log nk
, where γi

is an estimate for |TLi
| such that

|TLi
| ≤ γi ≤

(
1− 1

n2

)−1

|TLi
|.(4.7)

Initially we set L0 := ∅. This means that TL0 contains all the circuits of size
nk, and we therefore set γ0 := 23nk log nk

.
The algorithm works in such a way that for every i > 0, |TLi

| ≤ 4
5
|TLi−1

|.
Thus for some I ≤ d(log5/4 2) · 3nk log nke, TLI

= ∅ at which stage we will
terminate the loop and with it the first stage of the algorithm.

Note that at the end of the first stage we already have a list of coun-
terexamples, but those are only counterexamples for the search circuits S(C),
C ∈ SIZE(nk). In fact, the list after the end of the first stage is very easy
for decision circuits because it only contains satisfiable formulas. This is the
reason that we need the second stage.

In the second stage, the algorithm uses its oracle as a SAT solver (clearly
SAT ∈ prAM) to generate for every φj ∈ LI the list of formulas that are
queried along the search path (via the downward self-reducibility property of
SAT) for the lexicographic first satisfying assignment to φj (recall that every
φj is satisfiable). We may assume w.l.o.g. that all the formulas thus generated
are of description length n. The algorithm outputs all these formulas as the
list of counterexamples. Note that this list contains O(nk+1) formulas. By the
fact that TLI

= ∅ it follows that for every C ∈ SIZE(nk), S(C) fails to find a
satisfying assignment for at least one φj ∈ LI . This means that C errs on at
least one query along the search path for a satisfying assignment for φj, and
this query appears in the list that the learning algorithm outputs. It therefore
follows that the algorithm indeed outputs a list of counterexamples for the
concept class SIZE(nk).
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It remains to describe iteration step i > 0, given a list Li−1 = (φ1, . . . , φi−1)
and γi−1 as above. We need some more notation. For a list L of satisfiable
formulas all of the same length n and one additional satisfiable formula ρ of
length n, it is clear that TL∪{ρ} ⊆ TL. Define the set GL,ρ to be TL \ TL∪{ρ}.

Fortnow, Pavan and Sengupta used a probabilistic argument (similar to the
one in the result of Bshouty, Cleve, Gavaldà, Kannan, and Tamon (1996)) to
prove the following lemma.

Lemma 4.8. (Fortnow, Pavan, and Sengupta (2008)) If SATn cannot be com-
puted by circuits of size nk+3, then for every list L of satisfiable formulas each
of length n, there exists a satisfiable formula φ of length n such |TL∪{φ}| ≤ 2

3
|TL|

if TL 6= ∅.

For completeness, we provide the proof of this lemma.

Proof. We choose m := 36n circuits C1, ..., Cm from TL independently and
uniformly at random. Let C be a circuit taking majority vote of C1, ..., Cm.
The size of S(C) is at most nk+3. By the assumption, there is a formula φC

on which S(C) fails. Since S(C) never fails on unsatisfiable formulas, φC is
satisfiable.

We call a formula ρ bad if |TL∪{ρ}| > (2/3)|TL|. Fix a bad ρ. We then
have Pr[|TL∪{ρ} ∩ {C1, ..., Cm}| ≤ (1/2)m] < 2−2n by the Chernoff bounds. By
the union bound, Pr[∃bad ρ such that |TL∪{ρ} ∩{C1, ..., Cm}| ≤ (1/2)m] < 2−n

since the number of bad formulas is at most 2n.

Notice that more than half of C1, ..., Cm fails on φC for any C1, ..., Cm since
C fails on φC . Thus, the probability that φC is not bad is nonzero (at least
1 − 2−n) from the above inequality. It follows that there exists φ such that
|TL∪{φ}| ≤ (2/3)|TL|. ¤

By this lemma there exists a φ, such that

|GLi−1,φ| ≥ 1

3
|TLi−1

|

≥ 1

4

(
1− 1

n2

)−1

|TLi−1
|

≥ 1

4
γi−1.(4.9)

(Recall that |TLi−1
| ≤ γi−1 ≤ (1− 1

n2 )
−1|TLi−1

|.)
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We would like to find such a formula φ and then set Li := Li−1 ∪ {φ}. We
will not achieve quite that, but we will show how to find a φ such that

|GLi−1,φ| ≥ 1

5
γi−1 ≥ 1

5
|TLi−1

|.(4.10)

Claim 4.11. There is a promise problem Π1 ∈ prAM and a deterministic
polynomial-time procedure, that when given as input the set Li−1 and an esti-
mate γi−1 for |TLi−1

| that satisfies Inequality (4.7), as well as oracle access to
any function that agrees with Π1, outputs a Boolean formula φ of length n that
satisfies Inequality (4.10).

Proof. The instances of Π1 are of the form (1m, (ρ1, . . . , ρ`), p, a), where
m, ` > 0 are arbitrary integers, ρj ∈ {0, 1}m for every 1 ≤ j ≤ `, p ∈ {0, 1}b

for some integer 0 ≤ b ≤ m, and a is an integer between 0 and 23mk log mk
(in

binary representation). We define Π1 as follows:

◦ Yes instances: (1m, (ρ1, . . . , ρ`), p, a) ∈ ΠY
1 if ρ1, . . . , ρ` are all satisfiable

Boolean formulas and there exists an s ∈ {0, 1}m−b such that ρ = p ◦ s is
a satisfiable formula and |G(ρ1,...,ρ`),ρ| ≥ a.

◦ No instances: (1m, (ρ1, . . . , ρ`), p, a) ∈ ΠN
1 if either at least one of

ρ1, . . . , ρ` is not satisfiable, or for every s ∈ {0, 1}m−b, ρ = p◦s is not a sat-
isfiable formula, or ρ1, . . . , ρ` are all satisfiable and for every s ∈ {0, 1}m−b

for which ρ = p ◦ s is a satisfiable formula, |G(ρ1,...,ρ`),ρ| ≤ (1− 1
m2 )a.

Claim 4.12. Π1 ∈ prAM.

Proof. The protocol is as follows. Merlin sends a string s ∈ {0, 1}m−b. Let
ρ = p ◦ s. Merlin also sends satisfying assignments for all of ρ1, . . . , ρ`, ρ. If he
fails to do so, Arthur rejects.

Define the circuit C (which both Merlin and Arthur construct on their own)
that on input a description of a circuit B of size mk, checks whether S(B)
finds a satisfying assignment to all of ρ1, . . . , ρ` but fails to find a satisfying
assignment to ρ. If so it outputs 1 and otherwise 0. Note that C computes the
characteristic function of G(ρ1,...,ρ`),ρ. Arthur and Merlin run the lower bound
protocol from Lemma 4.4 on input (C, a, 1

m2 ). Arthur accepts/rejects according
to whether he accepts/rejects the lower bound protocol.

It is easy to verify that the protocol runs in time that is polynomial in its
input length. We next argue about the completeness and soundness.
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Completeness: If ρ1, . . . , ρ` are all satisfiable Boolean formulas and there
exists an s ∈ {0, 1}m−b such that ρ = p ◦ s is a satisfiable formula and
|G(ρ1,...,ρ`),ρ| ≥ a, then Merlin can find and send such an s as well as satis-
fying assignments to ρ1, . . . , ρ`, ρ, and then the completeness follows from the
completeness of the lower bound protocol.

Soundness: If one of ρ1, . . . , ρ` is not satisfiable or there is no s such that
p ◦ s is satisfiable, then Arthur will reject after the first message of Merlin
with probability 1. Otherwise for every s, for which ρ = p ◦ s is satisfiable,
|G(ρ1,...,ρ`),ρ| ≤ (1− 1

m2 )a, and the soundness follows from the soundness of the
lower bound protocol. ¤

We show how to find, with the help of Π1, a formula φ that satisfies In-
equality ((4.10)). We will do that iteratively where in each iteration we will
set another bit of φ. Let µ0 := b1

4
γi−1c. Recall, by Lemma 4.8, that there

exists a formula that satisfies Inequality (4.9). The most significant bit (MSB)
of such a formula is either 0 or 1. In other words at least one of the following
is true: (1n, Li−1, 0, µ0) ∈ ΠY

1 and/or (1n, Li−1, 1, µ0) ∈ ΠY
1 . We query the Π1

oracle on the input (1n, Li−1, 0, µ0). If the answer is 1 we set the MSB of φ to
0, otherwise we set it to 1. Note that if we set the MSB to 1 then necessarily it
is the MSB of a formula that satisfies Inequality (4.9). However, if we set it to
0, this is not necessarily the case. The reason is that the query (1n, Li−1, 0, µ0)
may fall outside the promise of Π1. What we are assured of, though, is that
if the Π1 oracle answered 1 on (1n, Li−1, 0, µ0) then it is not in ΠN

1 . That is,
there is a satisfiable formula φ whose MSB is 0 such that |GLi−1,φ| ≥ (1− 1

n2 )µ0.
We set µ1 = (1 − 1

n2 )µ0 and continue. In the j’th iteration, suppose that we
already fixed a prefix p of length j − 1 such that we know that there is a suffix
that creates a satisfiable formula φ = p ◦ s for which |GLi−1,φ| ≥ µj−1, then
we query the Π1 oracle on (1n, Li−1, p ◦ 0, µj−1) and set the next bit to 0 if the
answer is 1 and otherwise we set it to 1. By the same argument as above we are
guaranteed that the new prefix has a suffix such that the resulting formula φ
satisfies |GLi−1,φ| ≥ (1− 1

n2 )µj−1. We then set µj := (1− 1
n2 )µj−1 and continue.

After n iterations we hold a formula φ of length n such that

|GLi−1,φ| ≥
(

1− 1

n2

)
µn ≥

(
1− 1

n2

)n

µ0

≥ 1

4

(
1− 1

n2

)n

γi−1 ≥ 1

5
γi−1

≥ 1

5
|TLi−1

|.
¤
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By Claim 4.11 we can find φ that satisfies Inequality (4.10). We then
set Li = Li−1 ∪ {φ}. By the definition of |GLi−1,φ|, we get that |GLi−1,φ| =
|TLi−1

\ TLi
| ≥ 1

5
|TLi−1

| which implies that |TLi
| ≤ 4

5
|TLi−1

| as required.
Next we show how to compute an estimate γi for |TLi

|. First we check
whether TLi

= ∅, in which case we terminate the main loop and move to the
second stage of the algorithm. Note that whether TLi

= ∅ is a coNP statement:
for every C of size nk, S(C) fails to find a satisfying assignment for at least one
φj ∈ Li. Thus we can query the prAM oracle to check that. If TLi

6= ∅, the
next claim shows that we can compute γi as required (with oracle to prAM).
This completes the description of the i’th iteration and hence the description
of the algorithm.

Claim 4.13. There is a promise problem Π2 ∈ prAM and a deterministic
polynomial-time procedure that when given as input the set Li, as well as oracle
access to any function that agrees with Π2 outputs a number γi ∈ [23nk log nk

],
such that |TLi

| ≤ γi ≤ (1− 1
n2 )

−1|TLi
|.

Proof. Let Π2 be the following promise problem on instances (1m, (ρ1, . . . , ρ`), a),
where m, ` > 0 are arbitrary integers, ρ1, . . . , ρ` are all of length m, and a is
an integer between 0 and 23mk log mk

(in binary representation):

◦ Yes instances: (1m, (ρ1, . . . , ρ`), a) ∈ ΠY
2 if ρ1, . . . , ρ` are all satisfiable

formulas and |T(ρ1,...,ρ`)| ≥ a.
◦ No instances: (1m, (ρ1, . . . , ρ`), a) ∈ ΠN

2 if either at least one of ρ1, . . . , ρ`

is not a satisfiable formula, or they are all satisfiable and |T(ρ1,...,ρ`)| ≤
(1− 1

m2 )a.

Notice that Π2 is designed similarly to Π1 in Claim 4.11, and hence it is easy to
see that Π2 ∈ prAM by inspecting the proof of Claim 4.12 (the differences from
Π1 are that we do not check the existence of the satisfiable formula ρ = p ◦ s
and we check the lower bound of |T(ρ1,...,ρ`)| rather than |G(ρ1,...,ρ`),ρ|.)

By the definition of Π2, we know that for every a ≤ |TLi
| a Π2 oracle answers

1 on the query (1n, Li, a), and for every a ≥ (1− 1
n2 )

−1|TLi
| a Π2 oracle answers

0 on the query (1n, Li, a). For values of a in between these two bounds we
have no guarantee on the oracle’s answers. The algorithm conducts a binary
search on the set [23nk log nk

] to find an a such that the Π2 oracle answers 0 on
(1n, Li, a) but 1 on (1n, Li, a − 1) (forcing the answer on (1n, Li, 0) to be 1).
Such a search takes O(nk+1) time and we are guaranteed that for the a that
we find,

|TLi
| ≤ a ≤

(
1− 1

n2

)−1

|TLi
|.
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We then set γi := a. ¤
¤

4.4. Derandomization Implies Exponential-Size Lower Bounds. We
now combine the ingredients from the previous paragraphs to prove Theo-
rem 4.1.

Proof. (of Theorem 4.1) We condition on whether SAT ∈ SIZE(n10) or not.
Case 1: SAT ∈ SIZE(n10). By hypothesis, PprAM = PPNP

= PNP. For every
0 < δ < 1, Kannan (1982) showed that on an input 1n, we can compute in
ΣP

3 the lexicographic first truth-table of length n (n = 2m) of a function (on
m inputs) whose circuit complexity is at least nδ. By Chakaravarthy and Roy
(2008), if SAT ∈ SIZE(n10), the polynomial-time hierarchy collapses to PprAM,
and hence to PNP by our hypothesis. In particular ΣP

3 ⊆ PNP and we can
compute the truth-table of the hard function in this class. By translation to
the exponential level, this implies that there is a function in ENP that cannot
be computed by circuits of size 2δn (for all sufficiently large n).
Case 2: SAT /∈ SIZE(n10). Let Γ be the promise problem in prAM from
Theorem 4.5. By hypothesis, prAM ⊆ PNP so there is a function f : {0, 1}∗ →
{0, 1} in PNP that agrees with Γ. By Theorem 4.5 there is a polynomial-
time deterministic oracle algorithm A, such that for every input length n for
which SATn does not have circuits of size O(n10), Af learns a poly(n)-long
list of counterexamples for SATn with respect to the concept class SIZE(n7).
The function that Af computes is in the class PPNP

= PNP. This implies by
Lemma 4.3, that there is a constant δ > 0 and a Boolean function in the class
ENP that cannot be computed by circuits of size 2δn (for infinitely many input
lengths n). ¤

5. Concluding Remarks

Our proofs show that there is a deterministic linear-exponential-time algorithm
A and a promise problem Π in prAM, such that for every function f that
agrees with Π, Af computes a language that requires Boolean circuits of linear-
exponential size. We point out that in both proofs the hard function that is
constructed depends on the specific f that is used as an oracle, i.e., on the
values of f outside of the promise. In the elementary proof this dependence
arises in determining the minority vote of the circuits diagonalized against,
whereas in the learning-based proof it arises in finding the counterexamples.
This is the reason that we do not get a lower bound for a language in the class
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EprAM. Recall that a language is in this class if for every oracle that agrees
with the promise, the algorithm computes the same function (i.e., the values
of the function do not depend on values of the oracle outside the promise).
Nevertheless, our results do imply the best known exponential-size lower bound,
namely the one for the class EΣP

2 . This is because the ΠP
2 simulation of our

prAM oracle (Fürer, Goldreich, Mansour, Sipser, and Zachos (1989)) gives
an explicit function in EΣP

2 that requires circuits of size Ω(2n/n). Proving an
exponential-size lower bound for the class EprAM (and thus improving the best
known lower bound) remains an open problem.

Another interesting open problem is to prove a true converse to Miltersen
and Vinodchandran (2005); Shaltiel and Umans (2005); Umans (2003).
Namely, show that a full derandomization of prAM implies lower bounds against
exponential-size nondeterministic circuits. This would give a tight connec-
tion between hardness and derandomization in the high-end setting. Namely,
exponential-size lower bounds (in this case for nondeterministic circuits) would
be sufficient and necessary for derandomization (of prAM).

Finally, we would like to point out some similarities between our elementary
proof and the proof of Goldreich (2010) that the assertion prBPP ⊆ P implies
certain canonical derandomizers. The latter proof has two main steps. First
a certain search-to-decision reduction for prBPP is proven. Then it is argued
that constructing a canonical derandomizer amounts to a certain diagonaliza-
tion procedure against all fixed polynomial-time algorithms. This diagonal-
ization turns out to be a prBPP-search problem. Now assuming prBPP ⊆ P
and using the search-to-decision reduction, this gives an efficient deterministic
construction of a canonical derandomizer. Interestingly, the search-to-decision
reduction fixes the solution to the search problem bit by bit where at each stage
it uses the fact that approximate counting up to additive accuracy is in prBPP.
In our proof we also search for an object (truth-table) by diagonalization, this
time against all circuits of a certain size. We do that by fixing it bit by bit
where at each stage we use the fact that approximate counting up to multi-
plicative accuracy is in prAM. We point out that Goldreich (2010) leaves as
an open problem whether a result similar to his in the nondeterministic setting
(i.e. regarding derandomizers for prAM) is true.
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