
Proceedings of Machine Learning Research 79:1–7, 2017 Open Algorithm Selection Challenge (OASC 2017)

Open Algorithm Selection Challenge 2017
Setup and Scenarios

Marius Lindauer lindauer@cs.uni-freiburg.de
Jan N. van Rijn vanrijn@cs.uni-freiburg.de
Department of Computer Science, University of Freiburg, Germany

Lars Kotthoff larsko@uwyo.edu

Department of Computer Science, University of Wyoming, USA

Editors: Marius Lindauer, Jan N. van Rijn and Lars Kotthoff

Abstract

The 2017 algorithm selection challenge provided a snapshot of the state of the art in
algorithm selection and garnered submissions from four teams. In this chapter, we describe
the setup of the challenge and the algorithm scenarios that were used.

Keywords: Algorithm Selection, Competition

1. Introduction

In many areas of AI, tremendous advances have been achieved in the last decades. Ap-
proaches often leverage problem specific characteristics for high performance; they special-
ize to particular problem instances. One way of leveraging this complementarity between
algorithms are algorithm portfolios combined with a selector that chooses the best algo-
rithm for a given instance – the algorithm selection problem (Rice, 1976). Formally, given a
portfolio of algorithms A ∈ P, a set of instances I and a performance metric m : P×I → R
(e.g., runtime), the algorithm selection problem is to determine a mapping s : I → P from
an instance i ∈ I to an algorithm A ∈ P such that the performance across all instances is
maximized (w.l.o.g):

max
s

1

|I|
∑
i∈I

m(s(i), i) (1)

A common approach to the algorithm selection problem is to characterize the instances
by instance features (Nudelman et al., 2004; Brazdil et al., 2008; Xu et al., 2011; Hoos et al.,
2014; Fawcett et al., 2014) and use machine learning to learn the mapping s.

Many different algorithm selection systems have been proposed since. Modifications of
the original algorithm selection problem include for example the use of pre-solving sched-
ules (Xu et al., 2008), per-instance algorithm schedules (Amadini et al., 2014b) or parallel
portfolio selection (Lindauer et al., 2015). In addition, different machine learning approaches
to learn s were proposed, e.g. regression models (Nudelman et al., 2004; Xu et al., 2008),
k-nearest neighbor (Leite and Brazdil, 2005; Kadioglu et al., 2011; van Rijn et al., 2015a),
pair-wise cost-sensitive random forests (Xu et al., 2011), stacked models (Kotthoff, 2012;

c© 2017 M. Lindauer, J.N. van Rijn & L. Kotthoff.

OASC 2017

Samulowitz et al., 2013) and dynamic portfolios (van Rijn et al., 2015b). For a thorough
overview on algorithm selection, we refer the interested reader to Kotthoff (2014).

ASlib (Bischl et al., 2016) is a benchmark library for algorithm selection that collects
data from the literature to provide a reproducible way of comparing different approaches
and evaluating the state of the art. It enabled the first challenge on algorithm selection in
2015 (Kotthoff et al., 2017), and the open algorithm selection challenge (OASC) in 2017.
In this document, we describe the setup of the OASC and the way we selected a new set of
interesting algorithm selection benchmarks for it.

2. Setup

The series of algorithm selection challenges is built upon the algorithm selection library
(ASlib; Bischl et al. (2016)). An ASlib scenario contains pre-computed results for a portfolio
of algorithms on a set of instances (e.g., a SAT instance or a Machine Learning dataset);
i.e. m(A, i) is known for all pairs of A ∈ P and i ∈ I. Furthermore for each instance, a set
of pre-computed instance features are available, as well as the time required to compute the
feature values. Having access to this data (and additional meta-data such as cutoff times)
enables algorithm selection researchers to perform reproducible comparisons of approaches.
ASlib distinguishes between two types of scenarios: runtime scenarios and quality scenarios.
In runtime scenarios the goal is to minimize the time to select an algorithm that solves all
instances (e.g. SAT, TSP), whereas in quality scenarios the goal is to find the algorithm
that obtains the highest score according to some metric (e.g. Machine Learning). The main
practical difference between the two types of scenarios is that the cost of feature computation
adds overhead in the former, but not in the latter case. Part of the data for a scenario was
given to participants to train their approaches on and another part was held out to enable
verification and a fair comparison.

The main differences between the 2017 and the 2015 algorithm selection challenges are
as follows:

1. In 2015, all scenarios were known, but the splits into training and test instances were
unknown. In 2017, the participants had access to performance and feature data on
training instances (2/3), and only the instance features for the test instances (1/3).

2. In addition, new scenarios that had not been published as part of ASlib before were
included in the 2017 evaluation. All scenarios were obfuscated by replacing scenario,
algorithm, instance, and feature names and multiplying all performance and feature
values by 4.

3. In 2015, the participants submitted their algorithm selection systems which were
trained and run by the organizers. In 2017, participants submitted their predictions
for the test set.

4. The 2017 challenge allowed arbitrary schedules of feature computation and algorithm
steps.

5. In 2017, each team was allowed a maximum of two submissions.

2

OASC 2017

We used the closed gap metric to compare the performance of algorithm selection systems
across different scenarios, as in the 2015 challenge. Given the optimal performance of the
virtual best solver (oracle) mVBS, the baseline performance of always selecting the best
average solver mSBS (single best solver), and the algorithm selection system at hand ms,
the closed gap for an algorithm selection benchmark is defined as:

mSBS −ms

mSBS −mVBS
(2)

In this metric, 1.0 corresponds to a perfect score (i.e. the algorithm selection system
always selects the best algorithm for each instance and does not generate overhead due
to instance feature computation) and 0.0 corresponds to the baseline (i.e. the single best
solver). A value of less than 0.0 indicates that the algorithm selection system is worse than
the single best solver, i.e. chooses algorithms that perform worse than it.1

3. Algorithm Selection Scenarios

Apart from giving the snapshot of the state of the art in algorithm selection at the time, the
algorithm selection challenge is also an opportunity to collect new scenarios for ASlib. We
build new scenarios for recent competitions, the CSP Minizinc Competition (Stuckey et al.,
2014), the MaxSAT Evaluation (Argelich et al., 2008), Mittelmann’s annual MIPLib eval-
uation (Koch et al., 2011), the QBF evaluation (Pulina, 2016), and SAT03-16 INDU, which
covers the international SAT competition from 2003 to 2016 (Balyo et al., 2017). The in-
stance features for all of these scenarios were computed with publicly-available software
(BNSL (Malone et al., 2018), CSP (Amadini et al., 2014a), Machine Learning (Pfahringer
et al., 2000; Sun and Pfahringer, 2013; van Rijn, 2016), MaxSAT (Ansótegui et al., 2016),
MIP (Leyton-Brown et al., 2009), QBF (Pulina and Tacchella, 2010), SAT (Xu et al.,
2008; Alfonso and Manthey, 2014) and TTP (Wagner et al., 2017)). The runtimes of the
algorithms and the feature computation costs were not measured on the same hardware.
However, since the feature costs are typically quite small compared to the algorithm run-
times, the estimation of an algorithm selection system’s performance should be quite close
to its real performance.

Table 1 shows the variety of different algorithm selection scenarios we used. We collected
scenarios from 8 application different domains and with different characteristics, ranging
across different numbers of algorithms (5-31) and instances (100-9720). The 2017 challenge
included scenarios with solution quality as the performance metric for the first time.

To study the effect of small changes between scenarios, we included two pairs of very sim-
ilar scenarios. CSP-Minizinc-Obj-2016 and CSP-Minizinc-Time-2016 consider the same
algorithms, instances and features, but the performance metric is different. In MAXSAT-PMS-2016

and MAXSAT-WPMS-2016, the algorithms and instances are different, but the features are the
same and the instances are typically considered to be quite similar.

The remainder of this volume gives the descriptions of the submissions.

1. The full rules and submission instructions are available at http://www.coseal.net/

open-algorithm-selection-challenge-2017-oasc/.

3

http://www.coseal.net/open-algorithm-selection-challenge-2017-oasc/
http://www.coseal.net/open-algorithm-selection-challenge-2017-oasc/

OASC 2017

Scenario Alias |A| |I| |F| F-Costs Objective Speedup

BNSL-2016∗ Bado 8 1179 86 X Time 41
CSP-Minizinc-Obj-2016 Camilla 8 100 95 × Quality n/a
CSP-Minizinc-Time-2016 Caren 8 100 95 X Time 61
MAXSAT-PMS-2016 Magnus 19 601 37 X Time 25
MAXSAT-WPMS-2016 Monty 18 630 37 X Time 16
MIP-2016 Mira 5 218 143 X Time 11
OPENML-WEKA-2017 Oberon 30 105 103 × Quality n/a
QBF-2016 Qill 24 825 46 X Time 265
SAT12-ALL∗ Svea 31 1614 115 X Time 30
SAT03-16 INDU Sora 10 2000 483 X Time 13
TTP-2016∗ Titus 22 9720 50 × Quality n/a

Table 1: Overview of algorithm selection scenarios used in 2017 showing the alias in the
competition, the number of algorithms |A|, the number of instances |I|, the number
of instance features |F|, whether costs for feature computation are available (F-
Costs), the performance objective and for runtime scenarios, the speedup of the
virtual best solver (VBS) over the single best solver (mSBS/mVBS). Scenarios
marked with an asterisk were available in ASlib before the challenge.

Acknowledgements

We thank Rolf-David Bergdoll for collecting the data for the new algorithm selection bench-
marks. M. Lindauer acknowledges funding by the DFG (German Research Foundation)
under Emmy Noether grant HU 1900/2-1. J. N. van Rijn acknowledges funding by the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme under grant no. 716721. Lars Kotthoff thanks Marius for including
him.

References

E. Alfonso and N. Manthey. New CNF features and formula classification. In D. Le Berre,
editor, Proceedings of Fifth Pragmatics of SAT workshop (POS), volume 27 of EPiC
Series in Computing, pages 57–71, 2014.

R. Amadini, M. Gabbrielli, and J. Mauro. An enhanced features extractor for a portfolio of
constraint solvers. In Y. Cho, S. Shin, S. Kim, C. Hung, and J. Hong, editors, Proceedings
of Symposium on Applied Computing, pages 1357–1359. ACM, 2014a.

R. Amadini, M. Gabbrielli, and J. Mauro. SUNNY: a lazy portfolio approach for constraint
solving. Theory and Practice of Logic Programming, 14(4-5):509–524, 2014b.

C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann. Maxsat by improved instance-
specific algorithm configuration. Artifical Intelligence, 235:26–39, 2016.

4

OASC 2017

J. Argelich, C. Min Li, F. Manyà, and J. Planes. The first and second max-sat evaluations.
JSAT, 4(2-4):251–278, 2008.

T. Balyo, M. Heule, and M. Järvisalo. SAT competition 2016: Recent developments. In
S.Singh and S. Markovitch, editors, Proceedings of the Conference on Artificial Intelli-
gence (AAAI’17), pages 5061–5063. AAAI Press, 2017.

B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Frechétte, H. Hoos,
F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren. ASlib: A benchmark library
for algorithm selection. Artificial Intelligence, pages 41–58, 2016.

P. Brazdil, C. Giraud-Carrier, C. Soares, and R. Vilalta. Metalearning: Applications to
Data Mining. Springer Publishing Company, Incorporated, 1 edition, 2008.

C. Fawcett, M. Vallati, F. Hutter, J. Hoffmann, H. Hoos, and K. Leyton-Brown. Improved
features for runtime prediction of domain-independent planners. In S. Chien, D. Minh,
A. Fern, and W. Ruml, editors, Proceedings of the Twenty-Fourth International Confer-
ence on Automated Planning and Scheduling (ICAPS-14). AAAI, 2014.

H. Hoos, M. Lindauer, and T. Schaub. claspfolio 2: Advances in algorithm selection for
answer set programming. Theory and Practice of Logic Programming, 14:569–585, 2014.

S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann. Algorithm
selection and scheduling. In J. Lee, editor, Proceedings of the Seventeenth International
Conference on Principles and Practice of Constraint Programming (CP’11), volume 6876
of Lecture Notes in Computer Science, pages 454–469. Springer-Verlag, 2011.

T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. Bixby, E. Danna, G. Gam-
rath, A. Gleixner, S. Heinz, A. Lodi, H. Mittelmann, T. Ralphs, D. Salvagnin, D. Steffy,
and K. Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103–163,
2011.

L. Kotthoff. Hybrid Regression-Classification Models for Algorithm Selection. In 20th
European Conference on Artificial Intelligence, pages 480–485, August 2012.

L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI Magazine,
35(3):48–60, 2014.

L. Kotthoff, B. Hurley, and B. O’Sullivan. The ICON challenge on algorithm selection. AI
Magazine, 38(2):91–93, 2017.

R. Leite and P. Brazdil. Predicting Relative Performance of Classifiers from Samples. In
Proceedings of the 22nd international conference on Machine learning (ICML), pages
497–503. ACM, 2005.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Empirical hardness models: Methodology
and a case study on combinatorial auctions. Journal of the ACM, 56(4), 2009.

5

OASC 2017

M. Lindauer, H. Hoos, and F. Hutter. From sequential algorithm selection to parallel
portfolio selection. In C. Dhaenens, L. Jourdan, and M. Marmion, editors, Proceedings of
the Nineth International Conference on Learning and Intelligent Optimization (LION’15),
Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, 2015.

B. Malone, K. Kangas, M. Järvisalo, M. Koivisto, and P. Myllymäki. Empirical hardness of
finding optimal bayesian network structures: Algorithm selection and runtime prediction.
Machine Learning, 2018. to appear.

E. Nudelman, K. Leyton-Brown, A. Devkar, Y. Shoham, and H. Hoos. Understanding
random SAT: Beyond the clauses-to-variables ratio. In M. Wallace, editor, Proceedings of
the 10th International Conference on Principles and Practice of Constraint Programming
(CP’04), volume 3258 of Lecture Notes in Computer Science, pages 438–452. Springer-
Verlag, 2004.

B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Tell me who can learn you and I can
tell you who you are: Landmarking Various Learning Algorithms. In Proceedings of the
17th international conference on machine learning (ICML), pages 743–750, 2000.

L. Pulina. The ninth QBF solvers evaluation - preliminary report. In F. Lonsing and
M. Seidl, editors, Proceedings of the 4th International Workshop on Quantified Boolean
Formulas (QBF’16), volume 1719 of CEUR Workshop Proceedings, pages 1–13. CEUR-
WS.org, 2016.

L. Pulina and A. Tacchella. AQME’10. JSAT, 7(2-3):65–70, 2010.

J. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.

H. Samulowitz, C. Reddy, A. Sabharwal, and M. Sellmann. Snappy: A simple algorithm
portfolio. In M. Järvisalo and A. Van Gelder, editors, Proceedings of the 16th International
Conference on Theory and Applications of Satisfiability Testing, volume 7962 of Lecture
Notes in Computer Science, pages 422–428. Springer, 2013.

P. Stuckey, T. Feydy, A. Schutt, G. Tack, and J. Fischer. The minizinc challenge 2008-2013.
AI Magazine, 35(2):55–60, 2014.

Q. Sun and B. Pfahringer. Pairwise meta-rules for better meta-learning-based algorithm
ranking. Machine learning, 93(1):141–161, 2013.

J. N. van Rijn. Massively Collaborative Machine Learning. PhD thesis, Leiden University,
2016.

J. N. van Rijn, S. Abdulrahman, P. Brazdil, and J. Vanschoren. Fast Algorithm Selection
using Learning Curves. In Proceedings of the International Symposium on Advances in
Intelligent Data Analysis XIV, pages 298–309. Springer, 2015a.

J. N. van Rijn, G. Holmes, B. Pfahringer, and J. Vanschoren. Having a Blast: Meta-
Learning and Heterogeneous Ensembles for Data Streams. In Proceedings of the IEEE
International Conference on Data Mining (ICDM), pages 1003–1008. IEEE, 2015b.

6

OASC 2017

M. Wagner, M. Lindauer, M. Misir, S. Nallaperuma, and F. Hutter. A case study of
algorithm selection for the traveling thief problem. Journal of Heuristics, pages 1–26,
2017.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research, 32:565–606, 2008.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown. Hydra-MIP: Automated algorithm
configuration and selection for mixed integer programming. In RCRA workshop on Ex-
perimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
at the International Joint Conference on Artificial Intelligence (IJCAI), 2011.

7

	Introduction
	Setup
	Algorithm Selection Scenarios

