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Abstract. Traditional clustering is limited to a single collection of ob-
jects, described by a set of features under simple objectives and con-
straints. Though this setting can scale to huge data sets, many real world
problems do not fit it. Consider the problem motivating this work: cre-
ating electoral district maps. Not only are two sets of objects (electoral
districts and elected officials) separately clustered simultaneously under
complex constraints, the clusters must be matched and it is required to
find a global optimum. Existing formulations of clustering such as those
using procedural languages or convex programming cannot handle such
complex settings. In this paper we explore clustering this complex set-
ting using constraint programming. We implement our methods in the
Numberjack language and make use of large-scale solvers such as Gurobi
which exploit multi-core architectures.

1 Introduction and Motivation

Big data has dominated the research landscape for several years as faster pro-
cessors and larger storage devices allow for more data to be analyzed and stored.
Big data problems allow leveraging huge amounts of related data such as mak-
ing predictions for a given patient using similar patients’ drug prescriptions /
regimes / prognoses. However, many problems of interest are inherently not big
data problems due to the intrinsic nature of the problem. Consider the moti-
vating example in this paper of creating electoral maps in Ireland which is a
unique problem to each country as leveraging other electoral map solutions will
not help.

We term such problems small data problems with a further critical difference
between small data and big data problems being unlike large data problems
such as predicting the most effective drug using evidence based medicine, small
data problems do not need to be solved frequently and hence investing a lot of
resources to find an optimal solution is acceptable and expected. For example
in our motivating example of creating electoral district maps, these maps are
typically redrawn every census which is every ten years. This makes small data
clustering problems an ideal fit for the constraint programming paradigm.



In particular we focus on small data problems that involve complex objects,
complex constraints and complex objective functions. Each set of objects has a
considerable number of constraints which will determine a feasible clustering. An
example of such a constraint is that the diameter of each district cluster (called a
constituency) should be at most a specified value. Finally, the required output is
not one clustering of all objects [11] or two disparate clusterings [13]. Instead, we
wish to find two separate clusterings for the different object types and an appro-
priate matching which assigns a cluster of elected officials to each constituency.
This results in a multi-level optimization problem for which a globally optimal
solution must be found.

In this paper, we present a multi-level clustering formulation of the electoral
district map creation problem. We view this as an example of complex clustering
involving complex objects, constraints and objective functions which cannot be
solved with machine learning and data mining methods. Our model is succinct
and captures all the core properties of the problem. Initial experiments show the
usefulness of the approach but the remaining challenge is scalability. Currently,
our method can solve problems involving under 1 million people on inexpensive
multi-core workstations but solving the problem for the Republic of Ireland
requires scaling to nearly 5 million people.

2 Motivating Problem

We now discuss the electoral map problem which is the focus application area for
this paper. A simplified pictorial representation of the electoral map problem is
shown in Figure 1. Electoral districts are clustered into constituencies which are
contiguous. For each constituency, a group of representatives must be chosen.
That is, the entire collection of representatives is broken down into clusters
which are then allocated to constituencies. The population of a constituency is
determined by its electoral districts.

We assume the case in which we are creating an electoral map from scratch.
Changing an existing map where changes should be minimized is easily accommo-
dated by our model through additional constraints and augmenting the objective
function.

It is important to realize that electoral district maps are created (approx-
imately) once every decade, and in many countries this is not a political pro-
cess but rather an optimization process. The problem has many complexities
such as (i) simultaneously clustering the electoral districts into constituencies
and the elected officials into groups and then finding a bijective matching that
assigns each cluster of elected officials to a cluster of electoral districts (i.e. a
constituency), (ii) each elected official must effectively be in charge of an approx-
imately equal sub-population and (iii) each constituency should contain districts
which are geographically contiguous and convex-like.
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Fig. 1. An overview of our proposed application task on electoral district map creation.

3 Related work

The work related to our algorithmic research can be divided into three areas:
clustering problems that search for global optima, clustering complex data, and
clustering using constraint programming.

3.1 Global Optimum Clustering Methods

There exist several formulations of finding the global optimum that is suited for
small data sets. Charikar et al. [4] study correlation clustering where instances
are described only by their positive and negative relationships with each other;
they present factor 3 approximation algorithms based on semi-definite program-
ming formulations. Similarly, the k-medoid problem can be solved exactly using
integer linear programming formulations [3]. However, both of these formula-
tions are limited to simple objective functions. Other work [8, 10] focuses on
finding global optima for partitional and hierarchical clustering with new objec-
tive functions. However, this work is only for a single collection of objects, unlike
the work discussed in the current paper.

3.2 Clustering complex data

There exist formulations of clustering for heterogeneous data (multiple object
types) [11, 14]. However, this work implicitly tries to find a single clustering of
different object types. For example our own work [11] attempts to cluster images,
video, text and locations so that each cluster is a heterogeneous collection of
objects. This is achieved by having together and apart relations between objects
of different types and projecting the data to a common low dimensional space.
Similarly there has been work using complex combinations of together/apart



constraints [19]. In that work, the underlying constraints are modeled as relations
that can be expressed in conjunctive normal form.

3.3 Clustering using declarative languages

There have been declarative approaches to solving clustering problems. For ex-
ample, [8] propose a SAT-based framework for efficient clustering with con-
straints. SAT solvers have been used to model constraints [9] but the underlying
clustering algorithm is still procedural. A declarative approach to clustering is
discussed in [6]; however, this work models traditional clustering using a CP.

3.4 The Electoral Map Creation problem

To our knowledge, this is the first attempt to formulate the problem as a global
optimization problem. Earlier work creates easier versions of the problem as
discussed below and all use heuristics with no guarantee of finding a global
optimum.

Ricca and Simeone [16] consider electoral districting for regions of Italy. They
acknowledge that the optimization problem is very hard (but do not prove NP-
hardness) and employ heuristics. Similarly, Photis [15] proposes SPiRAL and
also uses hand crafted heuristics. Guo and Jin [12] present iRedistrict, a software
platform that allows the user to interactively optimise a clustering of electoral
districts. The authors apply their approach to clustering counties in the US
states of Iowa and South Carolina and employ a heuristic based on Tabu search.

4 Constraint Model

An overview of our clustering model is shown in Figure 2. It is important to
realize that there are multiple object types and that objects of each type are
described by both features and relationships among them. We wish to cluster
each object type separately and construct a matching between the clusters in
different clusterings.

4.1 Objects

Let n1 be the number of objects of the first type (O1) which we shall call electoral
districts (ED) and n2 be the number of objects of the second type (O2) which
we call elected officials (EO). Let k1 and k2 be the number of clusters for the
first and second object types respectively. Since in this problem we require a
bijective matching, we have k1 = k2; we will denote this common value as k. In
our example, the ED-clusters are termed constituencies and the EO-clusters are
termed packs of representatives.

Let X be the n1×k indicator matrix that determines the cluster assignments
for the type one objects. This is achieved by each column in X being a 0/1
indicator vector for membership in a cluster. In our example X indicates which
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Fig. 2. An overview of our proposed setting for m different types of objects.

electoral district is assigned to which constituency. Further let Y be the n2 × k
indicator matrix that determines the object assignments for the second object
type. In our example, Y indicates which official is assigned to which pack-of-
representatives. Formally:

xi,j = 1, if electoral district i is part of constituency j
= 0, otherwise.

yi,j = 1, if official i is part of group j
= 0, otherwise.

We note that for our application, the actual values for the yi,j are not of
interest as we only require the number of representatives for a particular district.
We nevertheless model them explicitly for clarity. The additional variables do
not affect solving performance in practice.

4.2 Properties/Features of Objects

We define properties P1 and P2 for object types one and two which can be used
as the basis of the objective function and constraints. In our example P1 =
(p1, p2, . . . , pn1) is a vector with n1 elements, containing the populations of the
electoral districts whilst P2 is a vector with n2 elements specifying how many
people an official represents. An important benefit of the constraint programming
(CP) formulation is that features need not be directly given; instead, they can be
functions of other features even from other object sets. For example, P2 cannot



be directly given since it depends on the ED-clustering and the EO-clustering.
However, we can use the auxiliary vector Z defined in Equation 5 to calculate
P2.

4.3 Objective function

Whereas most clustering formulations have simple objective functions and find-
ing a local optimum is sufficient, here we focus on complex objective functions
and finding a global optimum.

In our example, we aim to make the number of people each official represents
as equal as possible across all officials. In other words, the difference in the
number of people represented between an official that represents most people
and an official that represents fewest people should be minimized. This is an
example of an objective function based on cardinality and differs from most
clustering objectives which are geometric in nature. Formally, our optimization
problem can be represented as follows:

min (max(P2)−min(P2)) ≡ min (max(Z)−min(Z)) (1)

4.4 Composition Constraints

Here we outline three types of composition constraints that are easily enforceable
in a constraint model, (i) basic composition, (ii) cardinality constraints and
(iii) complex composition constraints.

First we provide basic constraints to ensure that X and Y are legitimate
set partitions. We require that each object is assigned to exactly one cluster
(mink1 = maxk1 = 1 andmink2 = maxk2 = 1) which in our example means each
electoral district is assigned to exactly one constituency and each constituency
is assigned at least one electoral district. Formally:

∀i ∈ {1 . . . n1} : mink1 ≤
k∑

j=1

xi,j ≤ maxk1

∀i ∈ {1 . . . n2} : mink2 ≤
k∑

j=1

yi,j ≤ maxk2 (2)

However, we could just as easily specify constraints that an object could be
assigned to a minimum and/or maximum number of clusters by adjusting the
values of mink1,mink2 and maxk1,maxk2 respectively. This will allow overlap-
ping clusters and explicitly control the amount of overlap.

We require each cluster to contain at least one point. The corresponding
constraints are:

∀j ∈ {1 . . . k} :

n1∑
i=1

xi,j ≥ 1

∀j ∈ {1 . . . k} :

n2∑
i=1

yi,j ≥ 1 (3)



Again by changing the bounds on this summation we allow more complex con-
straints which bound the cardinality of cluster size. We note this is a trivial
exercise in CP but is challenging in procedural languages [1].

In CP, we can easily create new auxiliary variables and impose constraints on
them. We channel the number of officials per constituency into an auxiliary vari-
able vector A = (a1, a2, . . . , ak) and require that each constituency be assigned
between EOmin and EOmax officials.

∀j ∈ {1 . . . k} : Let aj =

n2∑
i=1

yi,j

∀j ∈ {1 . . . k} : EOmin ≤ aj ≤ EOmax (4)

Similarly, we can calculate the number of people each official represents
(zi) by the summing the populations of the electoral districts (given by P1 =
(p1 . . . pn1)) and dividing by the number of officials assigned to the respective
constituency. This gives us the vector Z. Formally:

∀j ∈ {1 . . . k} : Let zj =

∑n1

i=1 xi,jpi
aj

(5)

It is trivial to encode instance level composition constraints such as must-link
and cannot-link that others have extensively studied (see e.g. [7, 18]) by noting

the following: if ED i and j must be together then
∑k

r=1 xi,r × xj,r = 1, and if
they must not be together then the sum should equal 0. A particular strength of
CP is that composition constraints can be used in logical combinations; some-
thing that is challenging to do in other formulations [19].

Our constraint model is very flexible and allows for arbitrary additional con-
straints. In our application, the Irish constitution stipulates that no official may
represent more than 30,000 people. This is easily added to the model with the
following constraint.

∀j ∈ {1 . . . k} : zj ≤ 30, 000 (6)

4.5 Relational Continuity Constraints

In addition to the requirements encoded above, we need to post constraints
enforcing the connectivity of the electoral districts in a constituency. The closest
approach to our work has been presented recently in [5], but the authors consider
only a less complex setting – here, we do not limit the number of subsets to one
and we do not know the terminal nodes a priori.

The global constraint catalog (http://sofdem.github.io/gccat/) is a col-
lection of over 500 complex constraints covering a range of different application
areas like graphs, networks and even SAT problems. We leverage the tree con-
straint [2] to ensure that the underlying ED-clusters are contiguous. That is,
there may be no ED that is clustered into a constituency, but is disconnected



from the rest of the electoral districts in the same constituency. The same applies
to disconnected groups of electoral districts. Formally:

∀a, b ∈ {1 . . . n1}, a ̸= b, j ∈ {1 . . . k} :

(xa,j = 1 ∧ xb,j = 1) =⇒
(∃C = {c : c ∈ {1 . . . n}, xc,j = 1, c ̸= a, c ̸= b}) :
adjacent(a, c1) ∧ . . . ∧ adjacent(ck, b)

(7)

In other words, Equation (7) requires that for each pair of electoral districts
a and b, if they belong to the same constituency, there must exist a set C
of electoral districts that are not a or b, but belong to the same constituency.
Furthermore, there exists an ordering of all c ∈ C such that the ordered set forms
a path from a to b, i.e. each element in the path is adjacent to its predecessor
and successor.

In practice, it is not efficient to encode this constraint in this general form
– the model would need to consider all pairs of electoral districts, all possible
assignments to constituencies for them, and all possible paths between them. In
particular, the number of possible paths between a pair of electoral districts is
far too large to encode, even for this small data problem.

We therefore express this requirement in a different, semantically equivalent
form. Using the tree constraint, we require electoral districts in each constituency
to form a tree. That is, one district is arbitrarily designated the root and all other
districts must be connected to it or one of its children. This means each district
must be adjacent to at least one other district in the same constituency, which
is in turn connected to other districts. This way, we ensure that each district is
connected to each other district in the same constituency, because each node in
a tree is connected to each other node in the same tree, ignoring the direction
of the links.

To encode a tree for each electoral district cluster, we introduce three new
variables for each node – the rank in the tree (corresponding to the distance from
the root), rank, the index of the cluster (i.e. constituency) the electoral district
is assigned to, cidx, and the index of the electoral district that is its parent in the
tree (i.e. one of the districts it is adjacent to on the electoral map), adj. Electoral
districts can be their own parents in the tree, indicating that they are at the root
of the respective tree. We then add the following constraints, according to the
decomposition of the constraint as specified in the global constraint catalogue.

∀i ∈ {1 . . . n1}, adjacent(j, i), i ̸= j :

(adji = j) =⇒ ((ranki > rankj) ∧ (adjj ̸= i)

∧ (cidxi = cidxj))

(8)

The intuition behind the model is that districts in a tree are ordered according
to their rank, which is derived from the parent information. Each district must
have a parent, parent districts must be in the same tree (i.e. constituencies),
and the constraints on the ranks ensure that there are no cycles. Each tree is



characterized by a root node (which is a parent of itself) and root nodes must
be in different trees, i.e. different constituencies. The number of trees must be
equal to the number of constituencies (clusters).

If district j is i’s parent in the same tree, then the rank of i is strictly greater
than that of j, i is not j’s parent, and both districts are in the same constituency.

∀i, j ∈ {1 . . . n}, i ̸= j :

((ranki = 0) ∧ (rankj = 0)) =⇒ (cidxi ̸= cidxj)
(9)

If two districts both have a rank of 0, they cannot be in the same constituency.
That is, they are both root nodes of trees. Finally, we require the number of
districts with rank 0 to be equal to the number of constituencies.

card(rank, 0) = k (10)

In addition, we post the following channelling constraints.

∀i ∈ {1 . . . n} : xi,cidxi
= 1 (11)

∀i ∈ {1 . . . n} : adji = i ⇐⇒ ranki = 0 (12)

The former constraint ensures that the cluster index cidx is set according to
the cluster assignments and the latter that an electoral district has rank 0 iff it
is connected to itself.

4.6 Putting It All Together: The Complete Formulation

For completeness, we show in Figure 4.6 our entire CP formulation for the elec-
toral map creation problem. In that figure, each element of the vector Z (which
has n2 entries) corresponds to the number of people represented by an official.
Also, an informal description of each constraint is provided before its formal
specification.

In the case of the Irish electoral map creation problem, we need each object to
appear in exactly one cluster (i.e. we need a partitional clustering of both types
of objects). Thus, each of the four parameters mink1, maxk1, mink2 and maxk2

is set to 1. Additionally, we set EOmin = 3, EOmax = 5 and POPmax = 30, 000.

5 Experiments

We modeled the problem of finding constituencies and packs-of-representatives
for Ireland as outlined above. The data on electoral districts and their popula-
tions is available on the website of the Central Statistics Office of Ireland5.

In this preliminary evaluation, we consider only Galway City with just 22
EDs representing a population of 75529 people which must be allocated to 8
elected officials (TDs). The optimal solution is shown in Figure 4. Table 1 shows
the results and that the optimum value for the parameter of Equation (6) is
2218.3.
5 http://census.cso.ie/censusasp/saps/boundaries/eds_bound.htm



Objective:
min (max(Z)−min(Z))

X = [xi,j ]n1×k and Y = [yi,j ]n2×k are matrices with {0, 1} entries.

Subject To:

I. Bounds on the number of clusters in which an object may appear.

∀i ∈ {1 . . . n1} : mink1 ≤
k∑

j=1

xi,j ≤ maxk1

∀i ∈ {1 . . . n2} : mink2 ≤
k∑

j=1

yi,j ≤ maxk2

II. Ensuring that each cluster is non-empty.

∀j ∈ {1 . . . k} :

n1∑
i=1

xi,j ≥ 1

∀j ∈ {1 . . . k} :

n2∑
i=1

yi,j ≥ 1

III. The number of elected officials per cluster is between EOmin and EOmax.

∀j ∈ {1 . . . k} : Let aj =

n2∑
i=1

yi,j

∀j ∈ {1 . . . k} : EOmin ≤ aj ≤ EOmax

IV. Bound on the population represented by each elected official POPmax.

∀j ∈ {1 . . . k} : zj ≤ POPmax

V. Ensuring that each cluster is connected.

∀i ∈ {1 . . . n1}, j is adjacent to i, i ̸= j :

(adji = j) =⇒ ((ranki > rankj) ∧ (adjj ̸= i)

∧ (cidxi = cidxj))

Definitions of channel variables used above:

(a) Individuals allocated to each elected official:

∀j ∈ {1 . . . k} : Let zj =

∑n1
i=1 xi,jpi

aj

(b) Tree to ensure cluster connectivity.

∀i ∈ {1 . . . n1} : xi,cidxi = 1

∀i ∈ {1 . . . n1} : adji = i ⇐⇒ ranki = 0

∀i, j ∈ {1 . . . n}, i ̸= j : ((ranki = 0) ∧ (rankj = 0)) =⇒ (cidxi ̸= cidxj)

card(rank, 0) = k

Fig. 3. The objective and constraints used to encode our formulation.



Fig. 4. Solution for Galway City. The colors denote the constituencies, the numbers
show the populations for the districts.

cluster electoral
districts

population representatives population per
representative

1 5 24164 3 8054.667
2 17 51365 5 10273

Table 1. Clusters in the optimal solution for Galway City.

6 Discussion and Challenges

The results presented above only represent a small fraction of the full problem
we are interested in. Unfortunately, even this result took significant computa-
tional resource to obtain; in the order of 100 CPU hours. As the full problem is
exponentially larger, we cannot hope to solve the current formulation for the full
problem. This is the main challenge that we face here and it is due to two main
reasons. Firstly, the optimization problem has an exponentially large number of
solutions and secondly the continuity constraint is difficult to satisfy. There are
several directions we believe are worth exploring which we now briefly outline.



6.1 Reducing Problem Size

Though the optimization is over the binary matrices X and Y the possible
range of the objective function is large. In our work, the range of the objective
function in Equation (6) is 0 . . . 30, 000. We can use the pigeon hole principle
to make this range much smaller and find another alternative but equivalent
objective function.

Let t be the total population of all districts to be clustered. Then there
must exist one cluster whose total population is at least t/k by the pigeon hole
principle [17]. Therefore, we can set a lower bound on this variable as t/k.

6.2 More Efficient Encoding of Constraints

One way of potentially improving performance is by encoding the connectivity
constraints in a better way. The encoding of the connectivity constraints provides
only very weak propagation throughout search, leaving potential for additional
pruning of the search tree. We have investigated a number of alternative formu-
lations that achieve better propagation, but require exponential space to encode.
This limits the applicability for our problem.

In addition, there are symmetries inherent in the formulation that we cur-
rently do not consider, for example the cluster assignments. Breaking these sym-
metries is not straightforward however, as we potentially need to take both clus-
terings into account.

7 Conclusions and Future Work

The topic of big data has dominated the research landscape and generated many
promising results for clustering problems that consist of simple objective func-
tions, constraints and object descriptions. Though these results scale to large
data sets they are not suited for problems with complex objectives, constraints
and object descriptions. We term these problems complex clustering problems
and explore one in particular: finding electoral district maps for Ireland.

The problem involves clustering two sets of objects (electoral districts and
elected officials) separately whilst simultaneously matching clusters from one
clustering to the other clustering. It inherently involves two layers of optimiza-
tion: clustering and bijective mapping under complex constraints including car-
dinality, continuity and diameter. Such problems are not easily formulated in the
traditional convex, spectral or even procedural formulations used extensively in
clustering.

Instead we show that constraint programming is a useful paradigm to address
these challenging problems. Not only is the problem formulation in CPs easy to
encode, it offers flexibility such as allowing overlapping clustering, cardinality
restrictions and constraints on auxiliary variables that are challenging in other
formulations. Our preliminary experimental evaluation shows the promise of the
approach.



The major challenge of using our approach in practice is that the search
space is very large and it takes significant computational resources to find the
optimal solution and that the continuity constraint is challenging to satisfy. In
future work, we will investigate ways of making the model and the solving more
efficient.
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