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Abstract. In recent years, portfolio approaches to solving SAT prob-
lems and CSPs have become increasingly common. There are also a num-
ber of di�erent encodings for representing CSPs as SAT instances. In this
paper, we leverage advances in both SAT and CSP solving to present a
novel hierarchical portfolio-based approach to CSP solving, which we call
Proteus, that does not rely purely on CSP solvers. Instead, it may decide
that it is best to encode a CSP problem instance into SAT, selecting an
appropriate encoding and a corresponding SAT solver. Our experimental
evaluation used an instance of Proteus that involved four CSP solvers,
three SAT encodings, and six SAT solvers, evaluated on the most chal-
lenging problem instances from the CSP solver competitions, involving
global and intensional constraints. We show that signi�cant performance
improvements can be achieved by Proteus obtained by exploiting alter-
native view-points and solvers for combinatorial problem-solving.

1 Introduction

The pace of development in both csp and sat solver technology has been rapid.
Combined with portfolio and algorithm selection technology impressive perfor-
mance improvements over systems that have been developed only a few years
previously have been demonstrated. Constraint satisfaction problems and satis-
�ability problems are both NP-complete and, therefore, there exist polynomial-
time transformations between them. We can leverage this fact to convert csps
into sat problems and solve them using sat solvers.

In this paper we exploit the fact that di�erent sat solvers have di�erent
performances on di�erent encodings of the same csp. In fact, the particular
choice of encoding that will give good performance with a particular sat solver
is dependent on the problem instance to be solved. We show that, in addition to
using dedicated csp solvers, to achieve the best performance for solving a csp
the best course of action might be to translate it to sat and solve it using a
sat solver. We name our approach Proteus, after the Greek god Proteus, the
shape-shifting water deity that can foretell the future.

Our approach o�ers a novel perspective on using sat solvers for constraint
solving. The idea of solving csps as sat instances is not new; the solvers Sugar,
Azucar, and CSP2SAT4J are three examples of sat-based csp solving. Sugar [29]



has been very competitive in recent csp solver competitions. It converts the
csp to sat using a speci�c encoding, known as the order encoding, which will
be discussed in more detail later in this paper. Azucar [30] is a related sat-
based csp solver that uses the compact order encoding. However, both Sugar

and Azucar use a single prede�ned solver to solve the encoded csp instances.
Our work does not assume that conversion using a speci�c encoding to sat is
the best way of solving a problem, but considers multiple candidate encodings
and solvers. CSP2SAT4J [21] uses the SAT4J library as its sat back-end and a
set of static rules to choose either the direct or the support encoding for each
constraint. For intensional and extensional binary constraints that specify the
supports, it uses the support encoding. For all other constraints, it uses the direct
encoding. Our approach does not have prede�ned rules but instead chooses the
encoding and solver based on features of the problem instance to solve.

Our approach employs algorithm selection techniques to dynamically choose
whether to translate to sat, and if so, which sat encoding and solver to use,
otherwise it selects which csp solver to use. There has been a great deal of re-
search in the area of algorithm selection and portfolios; we refer the reader to a
recent survey of this work [20]. We note three contrasting example approaches
to algorithm selection for the constraint satisfaction and satis�ability problems:
CPhydra (csp), SATzilla (sat), and isac (sat). CPhydra [24] contains an
algorithm portfolio of csp solvers which partitions CPU-Time between compo-
nents of the portfolio in order to maximize the probability of solving a given
problem instance within a �xed time limit. SATzilla [34], at its core, uses cost-
sensitive decision forests that vote on the sat solver to use for an instance. In
addition to that, it contains a number of practical optimizations, for example
running a pre-solver to quickly solve the easy instances. isac [17] is a cluster-
based approach that groups instances based on their features and then �nds the
best solver for each cluster. The Proteus approach is not a straightforward appli-
cation of portfolio techniques. In particular, there is a series of decisions to make
that a�ect not only the solvers that will be available, but also the information
that can be used to make the decision. Because of this, the di�erent choices of
conversions, encodings and solvers cannot simply be seen as di�erent algorithms
or di�erent con�gurations of the same algorithm.

The remainder of this paper is organised as follows. Section 2 motivates
the need to choose the representation and solver in combination. In Section 3
we summarise the necessary background on csp and sat to make the paper
self-contained and present an overview of the main sat encodings of csps.
The detailed evaluation of our portfolio is presented in Section 4. We create
a portfolio-based approach to csp solving that employs four csp solvers, three
sat encodings, and six sat solvers. Finally, we conclude in Section 5.

2 Multiple Encodings and Solvers

To motivate our work, we performed a detailed investigation for two solvers to
assess the relationship between solver and problem encoding with features of
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(a) Performance using MiniSat.
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(b) Performance using Clasp.

Fig. 1. MiniSat and Clasp on random binary csps.

the problem to be solved. For this experiment we considered uniform random
binary (urb) csps with a �xed number of variables, domain size and number
of constraints, and varied the constraint tightness. The constraint tightness t
is a measure of the proportion of forbidden to allowed possible assignments to
the variables in the scope of the constraint. We vary it from 0 to 1, where
0 means that all assignments are allowed and 1 that no assignments are part
of a solution, in increments of 0.005. At each tightness the mean run-time of
the solver on 100 random csp instances is reported. Each instance contains 30
variables with domain size 20 and 300 constraints. This allowed us to study the
performance of sat encodings and solvers across the phase transition.

Figure 1 plots the run-time for MiniSat and Clasp on uniformly random
binary csps that have been translated to sat using three di�erent encodings.
Observe that in Figure 1(a) there is a distinct di�erence in the performance of
MiniSat on each of the encodings, sometimes an order of magnitude. Before the
phase transition, we see that the order encoding achieves the best performance



and maintains this until the phase transition. Beginning at constraint tightness
0.41, the order encoding gradually starts achieving poorer performance and the
support encoding now achieves the best performance.

Notably, if we rank the encodings based on their performance, the ranking
changes after the phase transition. This illustrates that there is not just a single
encoding that will perform best overall and that the choice of encoding mat-
ters, but also that this choice is dependent on problem characteristics such as
constraint tightness.

Around the phase transition, we observe contrasting performance for Clasp,
as illustrated in Figure 1(b). Using Clasp, the ranking of encodings around the
phase transition is direct ≻ support ≻ order; whereas for MiniSat the ranking
is order ≻ direct ≻ support. Note also that the peaks at the phase transition
di�er in magnitude between the two solvers. These di�erences underline the im-
portance of the choice of solver, in particular in conjunction with the choice of
encoding � making the two choices in isolation does not consider the interdepen-
dencies that a�ect performance in practice.

In addition to the random csp instances, our analysis also comprises 1493
challenging benchmark problem instances from the csp solver competitions that
involve global and intensional constraints. Figure 2 illustrates the respective
performance of the best csp-based and sat-based methods on these instances.
Unsurprisingly the dedicated csp methods often achieve the best performance.
There are, however, numerous cases where considering sat-based methods has
the potential to yield signi�cant performance improvements. In particular, there
are a number of instances that are unsolved by any csp solver but can be solved
quickly using sat-based methods. The Proteus approach aims to unify the best
of both worlds and take advantage of the potential performance gains.

3 Background

3.1 The Constraint Satisfaction Problem

Constraint satisfaction problems (csp) are a natural means of expressing and
reasoning about combinatorial problems. They have a large number of practical
applications such as scheduling, planning, vehicle routing, con�guration, net-
work design, routing and wavelength assignment [26]. An instance of a csp is
represented by a set of variables, each of which can be assigned a value from
its domain. The assignments to the variables must be consistent with a set of
constraints, where each constraint limits the values that can be assigned to vari-
ables.

Finding a solution to a csp is typically done using systematic search based
on backtracking. Because the general problem is NP-complete, systematic search
algorithms have exponential worst-case run times, which has the e�ect of limiting
the scalability of these methods. However, thanks to the development of e�ective
heuristics and a wide variety of solvers with di�erent strengths and weaknesses,
many problems can be solved e�ciently in practice.
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Fig. 2. Performance of the virtual best csp portfolio and the virtual best sat-based
portfolio. Each point represents the time in seconds of the two approaches. A point
below the dashed line indicates that the virtual best sat portfolio was quicker, whereas
a point above means the virtual best csp portfolio was quicker. Clearly the two ap-
proaches are complementary: there are numerous instances for which a sat-based ap-
proach does not perform well or fails to solve the instance but a csp solver does
extremely well, and vice-versa.

3.2 The Satis�ability Problem

The satis�ability problem (sat) consists of a set of Boolean variables and a
propositional formula over these variables. The task is to decide whether or
not there exists a truth assignment to the variables such that the propositional
formula evaluates to true, and, if this is the case, to �nd this assignment.

sat instances are usually expressed in conjunctive normal form (cnf). The
representation consists of a conjunction of clauses, where each clause is a dis-
junction of literals. A literal is either a variable or its negation. Each clause is
a logical or of its literals and the formula is a logical and of each clause. The
following sat formula is in cnf:

(x1 ∨ x2 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3) ∧ (x3 ∨ x4)

This instance consists of four sat variables. One assignment to the variables
which would satisfy the above formula would be to set x1 = true, x2 = false,
x3 = true and x4 = true.

sat, like csp, has a variety of practical real world applications such as hard-
ware veri�cation, security protocol analysis, theorem proving, scheduling, rout-



ing, planning, digital circuit design [5]. The application of sat to many of these
problems is made possible by transformations from representations like the con-
straint satisfaction problem. We will study three transformations into sat that
can bene�t from this large collection of solvers.

The following sections explain the direct, support, and direct-order encodings
that we use. We will use the following notation. The set of csp variables is
represented by the set X . We use uppercase letters to denote csp variables in
X ; lowercase xi and xv refer to sat variables. The domain of a csp variable X
is denoted D(X) and has size d.

3.3 Direct Encoding

Translating a csp variable X into sat using the direct encoding [32], also known
as the sparse encoding, creates a sat variable for each value in its domain:
x1, x2, . . . , xd. If xv is true in the resulting sat formula, then X = v in the csp
solution. This means that in order to represent a solution to the csp, exactly
one of x1, x2, . . . , xd must be assigned true. We add an at-least-one clause to the
sat formula for each csp variable as follows:

∀X ∈ X : (x1 ∨ x2 ∨ . . . ∨ xd).

Conversely, to ensure that only one of these can be set to true, we add at-most-
one clauses. For each pair of distinct values in the domain of X, we add a binary
clause to enforce that at most one of the two can be assigned true. The series of
these binary clauses ensure that only one of the sat variables representing the
variable will be assigned true, i.e.

∀v, w ∈ D(X) : (¬xv ∨ ¬xw).

Constraints between csp variables are represented in the direct encoding by
enumerating the con�icting tuples. For binary constraints for example, we add
clauses as above to forbid both values being used at the same time for each
disallowed assignment. For a binary constraint between a pair of variables X
and Y , we add the con�ict clause (¬xv ∨ ¬yw) if the tuple ⟨X = v, Y = w⟩
is forbidden. For intensionally speci�ed constraints, we enumerate all possible
tuples and encode the disallowed assignments.

Example 1 (Direct Encoding). Consider a simple csp with three variables X =
{X,Y, Z}, each with domain ⟨1, 2, 3⟩. We have an all-di�erent constraint over the
variables: alldi�erent(X,Y, Z), which we represent by encoding the pairwise dis-
equalities. Table 1 shows the complete direct-encoded cnf formula for this csp.
The �rst 12 clauses encode the domains of the variables, the remaining clauses
encode the constraints between X, Y , and Z. There is an implicit conjunction
between these clauses.



Table 1. An example of the direct encoding.

Domain Clauses

(x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2) (¬x1 ∨ ¬x3) (¬x2 ∨ ¬x3)
(y1 ∨ y2 ∨ y3) (¬y1 ∨ ¬y2) (¬y1 ∨ ¬y3) (¬y2 ∨ ¬y3)
(z1 ∨ z2 ∨ z3) (¬z1 ∨ ¬z2) (¬z1 ∨ ¬z3) (¬z2 ∨ ¬z3)

X ̸= Y (¬x1 ∨ ¬y1) (¬x2 ∨ ¬y2) (¬x3 ∨ ¬y3)
X ̸= Z (¬x1 ∨ ¬z1) (¬x2 ∨ ¬z2) (¬x3 ∨ ¬z3)
Y ̸= Z (¬y1 ∨ ¬z1) (¬y2 ∨ ¬z2) (¬y3 ∨ ¬z3)

3.4 Support Encoding

The support encoding [9,18] uses the same mechanism as the direct encoding to
encode csp domains into sat � each value in the domain of a csp variable is
encoded as a sat variable which represents whether or not it takes that value.
However, the support encoding di�ers on how the constraints between variables
are encoded. Given a constraint between two variables X and Y , for each value
v in the domain of X, let SY,X=v ⊂ D(Y ) be the subset of the values in the
domain of Y which are consistent with assigning X = v. Either xv is false or
one of the consistent assignments from y1 . . . yd must be true. This is encoded in
the support clause

¬xv ∨

 ∨
i∈SY,X=v

yi

 .

Conversely, for each value w in the domain of Y , a support clause is added for
the supported values in X which are consistent with assigning Y = w.

An interesting property of the support encoding is that if a constraint has
no consistent values in the corresponding variable, a unit-clause will be added,
thereby pruning the values from the domain of a variable which cannot exist
in any solution. Also, a solution to a sat formula without the at-most-one con-
straint in the support encoding represents an arc-consistent assignment to the
csp. Unit propagation on this sat instance establishes arc-consistency in optimal
worst-case time for establishing arc-consistency [9].

Example 2 (Support Encoding). Table 2 gives the complete support-encoded cnf
formula for the simple csp given in Example 1. The �rst 12 clauses encode the
domains and the remaining ones the support clauses for the constraints. There
is an implicit conjunction between clauses.

3.5 Order Encoding

Unlike the direct and support encoding, which model X = v as a sat variable
for each value v in the domain of X, the order encoding (also known as the
regular encoding [2]) creates sat variables to represent X ≤ v. If X is less than
or equal to v (denoted x≤v), then X must also be less than or equal to v + 1



Table 2. An example of the support encoding.

Domain Clauses

(x1 ∨ x2 ∨ x3) (¬x1 ∨ ¬x2) (¬x1 ∨ ¬x3) (¬x2 ∨ ¬x3)
(y1 ∨ y2 ∨ y3) (¬y1 ∨ ¬y2) (¬y1 ∨ ¬y3) (¬y2 ∨ ¬y3)
(z1 ∨ z2 ∨ z3) (¬z1 ∨ ¬z2) (¬z1 ∨ ¬z3) (¬z2 ∨ ¬z3)

X ̸= Y
(¬x1 ∨ y2 ∨ y3) (¬x2 ∨ y1 ∨ y3) (¬x3 ∨ y1 ∨ y2)
(¬y1 ∨ x2 ∨ x3) (¬y2 ∨ x1 ∨ x3) (¬y3 ∨ x1 ∨ x2)

X ̸= Z
(¬x1 ∨ z2 ∨ z3) (¬x2 ∨ z1 ∨ z3) (¬x3 ∨ z1 ∨ z2)
(¬z1 ∨ x2 ∨ x3) (¬z2 ∨ x1 ∨ x3) (¬z3 ∨ x1 ∨ x2)

Y ̸= Z
(¬y1 ∨ z2 ∨ z3) (¬y2 ∨ z1 ∨ z3) (¬y3 ∨ z1 ∨ z2)
(¬z1 ∨ y2 ∨ y3) (¬z2 ∨ y1 ∨ y3) (¬z3 ∨ y1 ∨ y2)

(x≤v+1). Therefore, we add clauses to enforce this consistency across the domain
as follows:

∀d−1
v : (¬x≤v ∨ x≤v+1).

This linear number of clauses is all that is needed to encode the domain of a
csp variable into sat in the order encoding. In contrast, the direct and support
encodings require a quadratic number of clauses in the domain size.

The order encoding is naturally suited to modelling inequality constraints.
To state X ≤ 3, we would just post the unit clause (x≤3). If we want to model
the constraint X = v, we could rewrite it as (X ≤ v ∧ X ≥ v). X ≥ v can
then be rewritten as ¬X ≤ (v − 1). To state that X = v in the order encoding,
we would encode (x≤v ∧¬x≤v−1). A con�icting tuple between two variables, for
example ⟨X = v, Y = w⟩ can be written in propositional logic and simpli�ed to
a cnf clause using De Morgan's Law:

¬((x≤v ∧ x≥v) ∧ (y≤w ∧ y≥w))

¬((x≤v ∧ ¬x≤v−1) ∧ (y≤w ∧ ¬y≤w−1))

¬(x≤v ∧ ¬x≤v−1) ∨ ¬(y≤w ∧ ¬y≤w−1)

(¬x≤v ∨ x≤v−1 ∨ ¬y≤w ∨ y≤w−1)

Example 3 (Order Encoding). Table 3 gives the complete order-encoded cnf for-
mula for the simple csp speci�ed in Example 1. There is an implicit conjunction
between clauses in the notation.

3.6 Combining the Direct and Order Encodings

The direct encoding and the order encoding can be combined to produce a po-
tentially more compact encoding. A variable's domain is encoded in both repre-
sentations and clauses are added to chain between them. This gives �exibility in
the representation of each constraint. Here, we choose the encoding which gives
the most compact formula. For example, for inequalities we use the order encod-
ing since it is naturally suited, but for a (dis)equality we would use the direct
encoding. This encoding is referred to as direct-order throughout the paper.



Table 3. An example of the order encoding.

Domain Clauses

(¬x≤1 ∨ x≤2) (¬x≤2 ∨ x≤3) (x≤3)
(¬y≤1 ∨ y≤2) (¬y≤2 ∨ y≤3) (y≤3)
(¬z≤1 ∨ z≤2) (¬z≤2 ∨ z≤3) (z≤3)

X ̸= Y
(¬x≤1 ∨ ¬y≤1)
(¬x≤2 ∨ x≤1 ∨ ¬y≤2 ∨ y≤1)
(¬x≤3 ∨ x≤2 ∨ ¬y≤3 ∨ y≤2)

X ̸= Z
(¬x≤1 ∨ ¬z≤1)
(¬x≤2 ∨ x≤1 ∨ ¬z≤2 ∨ z≤1)
(¬x≤3 ∨ x≤2 ∨ ¬z≤3 ∨ z≤2)

Y ̸= Z
(¬y≤1 ∨ ¬z≤1)
(¬y≤2 ∨ y≤1 ∨ ¬z≤2 ∨ z≤1)
(¬y≤3 ∨ y≤2 ∨ ¬z≤3 ∨ z≤2)

3.7 Algorithm Portfolios

The Algorithm Selection Problem [25] is to select the most appropriate algo-
rithm for solving a particular problem. It is especially relevant in the context of
algorithm portfolios [11,16], where a single solver is replaced with a set of solvers
and a mechanism for selecting a subset to use on a particular problem.

Algorithm portfolios have been used with great success for solving both sat
and csp instances in systems such as SATzilla [34], isac [17] or CPhydra [24].
Most approaches are similar in that they relate the characteristics of a problem
to solve to the performance of the algorithms in the portfolio. The aim of an
algorithm selection model is to provide a prediction as to which algorithm should
be used to solve the problem. The model is usually induced using some form of
machine learning.

There are three main approaches to using machine learning to build algorithm
selection models. First, the problem of predicting the best algorithm can be
treated as a classi�cation problem where the label to predict is the algorithm.
Second, the training data can be clustered and the algorithm with the best
performance on a particular cluster assigned to it. The cluster membership of
any new data decides the algorithm to use. Finally, regression models can be
trained to predict the performance of each portfolio algorithm in isolation. The
best algorithm for a problem is chosen based on the predicted performances.

Our approach makes a series of decisions � whether a problem should be
solved as a csp or a sat problem, which encoding should be used for converting
into sat, and �nally which solver should be assigned to tackle the problem.
Approaches that make a series of decisions are usually referred to as hierarchical
models. [33] and [12] use hierarchical models in the context of a sat portfolio.
They �rst predict whether the problem to be solved is expected to be satis�able
or not and then choose a solver depending on that decision. Our approach is
closer to [10], which �rst predicts what level of consistency the alldifferent

constraint should achieve before deciding on its implementation.



To the best of our knowledge, no portfolio approach that potentially trans-
forms the representation of a problem in order to be able to solve it more e�-
ciently exists at present.

4 Experimental Evaluation

4.1 Setup

The hierarchical model we present in this paper consists of a number of layers to
determine how the instance should be solved. At the top level, we decide whether
to solve the instance using as a csp or using a sat-based method. If we choose
to leave the problem as a csp, then one of the dedicated csp solvers must be
chosen. Otherwise, we must choose the sat encoding to apply, followed by the
choice of sat solver to run on the sat-encoded instance.

Each decision of the hierarchical approach aims to choose the direction which
has the potential to achieve the best performance in that sub-tree. For exam-
ple, for the decision to choose whether to solve the instance using a sat-based
method or not, we choose the sat-based direction if there is a sat solver and
encoding that will perform faster than any csp solver would. Whether this par-
ticular encoding-solver combination will be selected subsequently depends on
the performance of the algorithm selection models used in that sub-tree of our
decision mechanism. For regression models, the training data is the best perfor-
mance of any solver under that branch of the tree. For classi�cation models, it
is the label of the sub-branch with the virtual best performance.

This hierarchical approach presents the opportunity to employ di�erent de-
cision mechanisms at each level. We consider 6 regression, 19 classi�cation, and
3 clustering algorithms, which are listed below. For each of these algorithms, we
evaluate the performance using 10-fold cross-validation. The dataset is split into
10 partitions with approximately the same size and the same distribution of the
best solvers. One partition is used for testing and the remaining 9 partitions as
the training data for the model. This process is repeated with a di�erent par-
tition considered for testing each time until every partition has been used for
testing. We measure the performance in terms of PAR10 score. The PAR10 score
for an instance is the time it takes the solver to solve the instance, unless the
solver times out. In this case, the PAR10 score is ten times the timeout value.
The sum over all instances is divided by the number of instances.

Instances. In our evaluation, we consider csp problem instances from the csp
solver competitions [1]. Of these, we consider all instances de�ned using global
and intensional constraints that are not trivially solved during 2 seconds of
feature computation. We also exclude all instances which were not solved by
any csp or sat solver within the time limit of 1 hour. Altogether, we obtain
1,493 non-trivial instances from problem classes such as Timetabling, Frequency
Assignment, Job-Shop, Open-Shop, Quasi-group, Costas Array, Golomb Ruler,
Latin Square, All Interval Series, Balanced Incomplete Block Design, and many
others. This set includes both small and large arity constraints and all of the



global constraints used during the csp solver competitions: all-di�erent, element,
weighted sum, and cumulative.

For the sat-based approaches, Numberjack [15] was used to translate a csp
instance speci�ed in xcsp format [27] into sat (cnf).

Features. A fundamental requirement of any machine learning algorithm is a
set of representative features. We explore a number of di�erent feature sets to
train our models: i) features of the original csp instance, ii) features of the
direct-encoded sat instance, iii) features of the support-encoded sat instance,
iv) features of the direct-order-encoded sat instance and v) a combination of all
four feature sets. These features are described in further detail below.

We computed the 36 features used in CPhydra for each csp instance using
Mistral; for reasons of space we will not enumerate them all here. The set
includes static features like statistics about the types of constraints used, average
and maximum domain size; and dynamic statistics recorded by running Mistral
for 2 seconds: average and standard deviation of variable weights, number of
nodes, number of propagations and a few others. Instances which are solved by
Mistral during feature computation are �ltered out from the dataset.

In addition to the csp features, we computed the 54 sat features used by
SATzilla [34] for each of the encoded instances and di�erent encodings. The
features encode a wide range of di�erent information on the problem such as
problem size, features of the graph-based representation, balance features, the
proximity to a Horn formula, DPLL probing features and local search probing
features.

Constraint Solvers. Our csp models are able to choose from 4 complete csp
solvers:

� Abscon [22],
� Choco [31],

� Gecode [8], and
� Mistral [14].

Satis�ability Solvers. We considered the following 6 complete sat solvers:

� clasp [7],
� cryptominisat [28],
� glucose [3],

� lingeling [4],
� riss [23], and
� MiniSat [6].

Learning Algorithms. We evaluate a number of regression, classi�cation, and
clustering algorithms using WEKA [13]. All algorithms, unless otherwise stated
use the default parameters. The regression algorithms we used were Linear-
Regression, PaceRegression, REPTree, M5Rules, M5P, and SMOreg. The clas-
si�cation algorithms were BayesNet, BFTree, ConjunctiveRule, DecisionTable,
FT, HyperPipes, IBk (nearest neighbour) with 1, 3, 5 and 10 neighbours, J48,
J48graft, JRip, LADTree, MultilayerPerceptron, OneR, PART, RandomForest,
RandomForest with 99 random trees, RandomTree, REPTree, and SimpleLogis-
tic. For clustering, we considered EM, FarthestFirst, and SimplekMeans. The
FarthestFirst and SimplekMeans algorithms require the number of clusters to



Table 4. Performance of the learning algorithms for the hierarchical approach. The
`Category Bests' consists of the hierarchy of algorithms where at each node of the
tree of decisions we take the algorithm that achieves the best PAR10 score for that
particular decision.

Classi�er Mean PAR10 Number Solved

VBS 97 1493
Proteus 1774 1424
M5P with csp features 2874 1413
Category Bests 2996 1411
M5Rules with csp features 3225 1398
M5P with all features 3405 1397
LinearRegression with all features 3553 1391
LinearRegression with csp features 3588 1383
MultilayerPerceptron with csp features 3594 1382
lm with csp features 3654 1380
RandomForest99 with csp features 3664 1379
IBk10 with csp features 3720 1377
RandomForest99 with all features 3735 1383

be given as input. We evaluated with multiples of 1 through 5 of the number of
solvers in the respective data set given as the number of clusters. The number of
clusters is represented by 1n, 2n and so on in the name of the algorithm, where
n stands for the number of solvers.

We use the LLAMA toolkit [19] to train and test the algorithm selection
models.

4.2 Portfolio and Solver Results

The performance of each of the 6 sat solvers was evaluated on the three sat
encodings of 1,493 csp competition benchmarks with a time-out of 1 hour and
limited to 2GB of RAM. The 4 csp solvers were evaluated on the original csps.
Our results report the PAR10 score and number of instances solved for each
of the algorithms we evaluate. The PAR10 is the sum of the runtimes over all
instances, counting 10 times the timeout if that was reached. Data was collected
on a cluster of Intel Xeon E5430 Processors (2.66Ghz) running CentOS 6.4. This
data is available online.1

The performance of a number of hierarchical approaches is given in Table 4.
The hierarchy of algorithms which produced the best overall results for our
dataset involves M5P regression with csp features at the root node to choose
sat or csp, M5P regression with csp features to select the csp solver, Lin-
earRegression with csp features to select the sat encoding, LinearRegression
with csp features to select the sat solver for the direct encoded instance, Lin-
earRegression with csp features to select the sat solver for the direct-order

1 http://4c.ucc.ie/~bhurley/proteus/

http://4c.ucc.ie/~bhurley/proteus/
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Fig. 3. Overview of the machine learning models used in the hierarchical approach.

encoded instance, and LinearRegression with the direct-order features to select
the sat solver for the support encoded instance. The hierarchical tree of speci�c
machine learning approaches we found to deliver the best overall performance
on our data set is labelled Proteus and is depicted in Figure 3.

We would like to point out that in many solver competitions the di�erence
between the top few solvers is fewer than 10 additional instances solved. In the
2012 sat Challenge for example, the di�erence between the �rst and second place
single solver was only 3 instances and the di�erence among the top 4 solvers was
only 8 instances. The results we present in Table 4 are therefore very signi�cant
in terms of the gains we are able to achieve.

Our results demonstrate the power of Proteus. The performance it delivers is
very close to the virtual best (VBS), that is the best performance possible if an
oracle could identify the best choice of representation, encoding, and solver, on an
instance by instance basis. The improvements we achieve over other approaches
are similarly impressive. The results conclusively demonstrate that having the
option to convert a csp to sat does not only have the potential to achieve
signi�cant performance improvements, but also does so in practice.

An interesting observation is that the csp features are consistently used in
each of the top performing approaches. One reason for this is that it is quicker
to compute only the csp features instead of the csp features, then converting
to sat and computing the sat features in addition. The additional overhead
of computing sat features is worthwhile in some cases though, for example for
LinearRegression, which is at its best performance using all the di�erent feature
sets. Note that for the best tree of models (cf. Figure 3), it is better to use the
features of the direct-order encoding for the decision of which solver to choose
for a support-encoded sat instance despite the additional overhead.

We also compare the hierarchical approach to that of a �attened setting with
a single portfolio of all solvers and encoding solver combinations. The �attened
portfolio includes all possible combinations of the 3 encodings and the 6 sat



Table 5. Ranking of each classi�cation, regression, and clustering algorithm to choose
the solving mechanism in a �attened setting. The portfolio consists of all possible
combination of the 3 encodings and the 6 sat solvers and the 4 csp solvers for a total
of 22 solvers.

Classi�er Mean PAR10 Number Solved

VBS 97 1493
Proteus 1774 1424
LinearRegression with all features 2144 1416
M5P with csp features 2315 1401
LinearRegression with csp features 2334 1401
lm with all features 2362 1407
lm with csp features 2401 1398
M5P with all features 2425 1404
RandomForest99 with all features 2504 1401
SMOreg with all features 2749 1391
RandomForest with all features 2859 1386
IBk3 with csp features 2877 1378

solvers and the 4 csp solvers for a total of 22 solvers. Table 5 shows these
results. The regression algorithm LinearRegression with all features gives the
best performance using this approach. However, it is signi�cantly worse than
the performance achieved by the hierarchical approach of Proteus.

4.3 Greater than the Sum of its Parts

Given the performance of Proteus, the question remains as to whether a di�erent
portfolio approach that considers just csp or just sat solvers could do better. Ta-
ble 6 summarizes the virtual best performance that such portfolios could achieve.
We use all the csp and sat solvers for the respective portfolios to give us VB
CSP and VB SAT, respectively. The former is the approach that always chooses
the best csp solver for the current instance, while the latter chooses the best
sat encoding/solver combination. VB Proteus is the portfolio that chooses the
best overall approach/encoding. We show the actual performance of Proteus for
comparison. Proteus is better than the virtual bests for all portfolios that con-
sider only one encoding. This result makes a very strong point for the need to
consider encoding and solver in combination.

Proteus outperforms four other VB portfolios. Speci�cally, the VBCPhydra

is the best possible performance that could be obtained from that portfolio if a
perfect choice of solver was made. Neither SATzilla nor isac-based portfolios
consider di�erent sat encodings. Therefore, the best possible performance either
of them could achieve for a speci�c encoding is represented in the last three lines
of Table 6.

These results do not only demonstrate the bene�t of considering the di�er-
ent ways of solving csps, but also eliminate the need to compare with existing
portfolio systems since we are computing the best possible performance that any



Table 6. Virtual best performances ranked by PAR10 score.

Method Mean PAR10 Number Solved

VB Proteus 97 1493
Proteus 1774 1424
VB CSP 3577 1349
VB CPHydra 4581 1310
VB SAT 17373 775
VB DirectOrder Encoding 17637 764
VB Direct Encoding 21736 593
VB Support Encoding 21986 583

of those systems could theoretically achieve. Proteus impressively demonstrates
its strengths by signi�cantly outperforming oracle approaches that use only a
single encoding.

5 Conclusions

We have presented a portfolio approach that does not rely on a single problem
representation or set of solvers, but leverages our ability to convert between
problem representations to increase the space of possible solving approaches.
To the best of our knowledge, this is the �rst time a portfolio approach like
this has been proposed. We have shown that, to achieve the best performance
on a constraint satisfaction problem, it may be bene�cial to translate it to a
satis�ability problem. For this translation, it is important to choose both the
encoding and satis�ability solver in combination. In doing so, the contrasting
performance among solvers on di�erent representations of the same problem can
be exploited. The overall performance can be improved signi�cantly compared
to restricting the portfolio to a single problem representation.

We demonstrated empirically the signi�cant performance improvements Pro-
teus can achieve on a large set of diverse benchmarks using a portfolio based on
a range of di�erent state-of-the-art solvers. We have investigated a range of dif-
ferent csp to sat encodings and evaluated the performance of a large number
of machine learning approaches and algorithms. Finally, we have shown that the
performance of Proteus is close to the very best that is theoretically possible
for solving csps and signi�cantly outperforms the theoretical best for portfolios
that consider only a single problem encoding.

In this work, we make a general decision to encode the entire problem using a
particular encoding. A natural extension would be to mix and vary the encoding
depending on attributes of the problem. An additional avenue for future work
would be to generalize the concepts in this paper to other problem domains
where transformations, like csp to sat, exist.
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