
Recomputation.org: Experience of Its First Year and
Lessons Learned

Ian P. Gent
School of Computer Science

University of St Andrews
St Andrews, Fife

Scotland
Email: ian.gent@st-andrews.ac.uk

Lars Kotthoff
INSIGHT Centre for Data Analytics
Cork Constraint Computation Centre

University College Cork
Western Gateway Building

Cork, Ireland
Email: lars.kotthoff@insight-centre.org

Abstract—We founded recomputation.org about 18 months
ago as we write. The site is intended to serve as a repository
for computational experiments, embodied in virtual machines
so that they can be recomputed at will by other researchers.
We reflect in this paper on those aspects of recomputation.org
that have worked well, those that have worked less well, and
to what extent our views have changed on reproducibility in
computational science.

I. RECOMPUTATION: THE CONCEPT, THE NAME, AND THE
MANIFESTO

Reproducibility in Computer Science is in crisis, although
nobody seems to have noticed yet. Actually, this is not nobody,
as there are many people working in the area. But the main-
stream of Computer Science has not realised that Computer
Science – a science which should be more reproducible than
most – is in danger of becoming less reproducible than most.

We have proposed that one part of the solution to the
reproducibility problem is ‘recomputation’. By recomputation
we mean the act of embodying a computational experiment
in a virtual machine so that it can be preserved and rerun
at any point in the future. This is one very specific aspect
of reproducibility, and far from the most important one.
But it has two key advantages. First, once an experiment is
made recomputable it can be rerun very easily. Second, a
recomputable experiment can be preserved indefinitely.

The original idea for the name ‘recomputation’ would have
been ‘replication’. However, that would be too confusing in
Computer Science since replication is a well established word
in databases. We chose the name for two simple reasons
“recomputation”:

• the word “recomputation” is an existing word, with the
right overtones and with no major meaning in Computer
Science (although it has been used in various contexts)
and

• the domain name recomputation.org was available.

In this paper we review the notion of recomputation and
summarise the principles. We discuss a number of areas where
our thinking on recomputation has changed over the last
eighteen months, or where our thinking has become more
nuanced by experience. We report on our experiences of giving

two tutorials at conferences and soliciting and obtaining ex-
periments for recomputation.org. Finally we discuss the major
obstacles we face in making recomputation.org successful.

The recomputation manifesto puts forward the following
points:

1. Computational experiments should be recom-
putable for all time.

2. Recomputation of recomputable experiments
should be very easy.

3. Tools and repositories can help recomputation
become standard.

4. It should be easier to make experiments recom-
putable than not to.

5. The only way to ensure recomputability is to
provide virtual machines.

6. Runtime performance is a secondary issue.
For more discussion of these points as we understood them
originally, see [1].

It has been noted that there are many words around this
area [2]. Therefore there is some slight guilt about having
introduced a new word or repurposed an existing word, to
add confusion. However we hope that, if anything, we can
reduce confusion. The recomputation manifesto is clear that
the word is taken to mean the exact duplication of an existing
experiment, including any flaws in the original.

II. REFLECTIONS ON THE RECOMPUTATION MANIFESTO

A. Recomputation: what is it good for?

Without doubt the recomputation manifesto laid out one
goal for recomputation. This was the exact replication of
previous experiments in the environment in which they were
originally performed. This remains the focus of recomputa-
tion.org. Can we recompute an experiment in the way it has
been done in the past?

This gives us a certain advantage in focussing on not a
computational environment but a specific experiment. That is,
we do not say the approach of embodying an experiment in a
VM is original (see for example Titus Brown’s experiment [3],
[4]). However, we believe there are two key advantages. First,



computational experiments are the key drivers of empirical
computational science. A paper making an advance will report
on a specific experiment. This may be intended as an exemplar
of others, but reviewers and readers will only have the specific
experiment as evidence. This is the experiment that needs to
be recomputed. Second, by wishing only to make specific
experiments recomputable, we have greatly simplified the
problems faced in providing a computational environment. It
is not critical to have an extensive testing suite, because it is
not necessary for anything not required for the experiment to
work.

Those are the advantages of our focus on individual exper-
iments. However, there is a potential downside. Our focus on
individual experiments can seem a little sterile. We have an
experiment, and then we keep it. It allows scientists to go back
in time, but very often they do not want to.

We believe strongly that recomputation has major advan-
tages beyond simply going back in time. We draw an analogy
with source code control. In explaining the idea to a newcomer,
one might explain that the key point is that one can go back in
time. But there is so much more to it than that. Experienced
users wonder how they ever lived without it. There are so many
working styles it enables that are more productive than without
it. These are the key advantages of source code control. In a
similar way we see many advantages of recomputation.

Perhaps the most important advantage is that VMs can serve
as either black boxes or as clear boxes. As black boxes, they
serve to make experiments very easy to recompute. But for
those wishing to delve deeper, they can be examined internally
by logging in and looking around. Scientists can explore the
machine, both statically (looking at files) and dynamically
(trying variants of experiments). Ideally, an experiment would
contain all relevant source code, but even if closed source,
future researchers can see the exact environment a binary was
run in.

The second – and very tightly linked – advantage is that
a VM can be adapted for other purposes. Because it is a
clear box, new scientists can see the great experiments of past
scientists, or (if they are not great experiments) correct their
mistakes. In either case, new experiments should be easier to
construct and better than if each scientist had to build their
own experiments. Computer scientists will have the incredible
luxury of being able to work in each other’s labs at a moment’s
notice and without invitation.

Third, there is a particular advantage of VMs for scientists
who wish to make their codebases available. Having a VM
in which an experiment is known to work might save great
amounts of time for individual scientists or small research
groups wishing to make their code available but without the
resources to spend large amounts of time on flexible build
systems and extensive documentation.

B. It was twenty years ago today

If you go to recomputation.org, the tagline you see is: “If
we can compute your experiment now, anyone can recompute
it 20 years from now.” This is a key commitment, because

there seems no limit to how long an experiment should be
kept. Indeed, Computer Science is no longer a young science
and 20 years is not such a long time in its history. We also
have the advantage that in general terms, as time goes by old
experiments get cheaper to keep and rerun because of Moore’s
law. However, two problems raise themselves if we are to keep
experiments for twenty years.

The first is that it is vital not to lose data! A project
founded on a twenty year promise would die immediately (or
at best become a well-deserved laughing stock) if it lost old
experiments. In this first period we have not focussed on this
enough. We have kept our VMs on single machines or backed
up to another machine in the same physical rack, meaning
potential disaster in the case of a single fire. We have recently
improved this so that now we are immune to a single fire, but
have yet to develop serious long term preservation plans. To
do that we are looking at services such as Amazon Glacier,
and Arkivum, the latter especially being heavily focussed on
guaranteeing long term preservation of data. Data preservation
thus becomes a financial instead of a technical problem. To
indicate finances, Arkivum’s prices start at £1 per GB per
year, but academic discounts are available as are discounts for
volume in both amount of data and period of storage. Many
machines we store are less than 1GB, so indeed 20 year storage
for such a machine can be guaranteed (to within reasonable
human limitations) for less than the cost of a single meal at
the conference the experiment was described at.

The second issue is more problematic. This is to ensure
that we can still recompute experiments in 20 years that
are deposited now. There are many issue around this. First,
a new version of virtual machine software could mean an
experiment stops working. We can keep old versions of
virtualisation software around, but as time passes that software
itself may stop running on then-generation hardware. At this
point the issue becomes problematic. Two main options seem
available. First is to keep old hardware which can run the old
virtualisation software to run the even older experiment. The
second is to emulate an older machine on a newer machine:
this could be either the machine the original experiment was
run on, or the machine that the virtualisation software was
run on. Our suspicion is that we may need both approaches.
Emulation imposes heavy overheads, but is effective [5]. Very
many, perhaps most, old machines can be emulated. This is
particularly clear in the case of games, where almost all old
games consoles are now emulated to an incredible degree of
fidelity. Many games depend on undocumented features of the
architecture discovered by games designers, yet they can be
run in emulators. For example the Olive Executable Archive
not only does this for games and other software, but allows
streaming over the internet [6]. This can be hoped for in
future for current machines. Indeed, if there were a major
architectural change, it is likely that major effort would be
made by third parties to provide emulators, because of the
huge investment in legacy software: this happened for example
when Apple changed Macs from PowerPC to Intel chips.

In summary, is reasonable to think that we can run 20 year



old experiments but this will need ongoing and significant care
and attention, and this is something that we have not yet given
to this issue.

C. Recomputation ̸= Exact Reproduction of Results

Possibly the most controversial point in the recomputation
manifesto is that runtime results are secondary. The reason
this is controversial is that often, from the point of view of
the scientist, almost the only point of an experiment is runtime,
to see for example if a new method is faster (that is, assuming
that correctness is already known.) Yet, in a VM, one might
get very different results – even opposite – from an original set
of experiments on bare silicon ran on a different architecture
to the machine doing the emulation.

We have discussed this at length with many people. We
wish to lobby against one – typically unstated – assumption
underlying this debate. This is that there is such a thing as the
true result, e.g. runtime speedup, that can be captured in some
way. Instead, we argue that in reality we must expect to get
different results every time we run an experiment, even when
we recompute using the identical machine each time. We do
not see recomputation as the same thing as exact reproduction
of results. Indeed, this goes beyond varying measures such as
runtime, and can affect results obtained such as the predicted
weather in one day’s time.

There is an analogy with the famous movie Groundhog
Day. In this movie the character experiences the same day,
February 2, over and over again. Everything is the same
except the character’s response to the situation. Indeed the
phrase “Groundhog Day” has become synonymous with events
repeating as well as its original meaning of a certain day of the
year. The analogy is clear. The same day is experienced over
and over again, in the same environment. But we get subtly
different results each time. This is akin to a recomputation:
the same calculation performed in the same environment over
and over again, but with different results. In recomputation,
this could be because of many factors. Naturally it could be
due to different CPU speeds or random number generators,
but it could be due to almost arbitrarily minor points. For
example, floating point addition is not associative, so if we
were simulating more than one core, the result of major
computations can be sensitive to, for example, the temperature
outside a data center. A slight increase in temperature outside
might increase the air conditioning, cooling down one core
slightly, leading partials to arrive in a different order, and a
different final sum to arise in an unstable system.1

When we run experiments repeatedly, we can expect to see
some aspects remain the same, and others to vary. Often the
main result will be the same but runtimes vary. But this is
to be accepted – even celebrated – and absorbed into our
culture. There is a huge difference between saying ‘Algorithm
A ran 1.2 times faster than Algorithm B on one machine
once’, and saying ‘Algorithm A ran a median of 1.2 times
faster but varied from 1.05 to 1.40 times faster over 47 runs

1We are grateful to Steve Linton for suggesting the data center example.

in different environments’. The latter is far more informative.
And recomputation provides researchers the tools to collect
more data, so need not be a sterile act. Rerunning experiments
may well be adding to the store of human knowledge, not just
checking that our existing knowledge is correct.

At the end of Groundhog Day, after millions of repetitions
(one estimate is that the main character experiences 10,000
years’ worth of days), the character has learnt something
incredibly powerful about himself. Perhaps there will be
experiments which – after having been recomputed millions
of times – lead to powerful results that could not have been
found from a small number of runs.

D. Comparison With Other Approaches

The use of virtual machines for archiving computational
experiments is neither original with us, nor the only possible
approach. There are numerous other approaches which have
been or can be used to package up experiments. These fall
into three categories. First, there are packaging systems which
have been developed not as tools for experiments, but as
tools to package software for distribution. Examples would
be Docker [7], Nix [8], and CDE [9]. These are all attractive
because they allow software to be distributed in ways which
allow execution without having the exact same environment as
the original machine. A second set of tools are those developed
with a particular programming language or environment in
mind. Particularly good examples would be iPython note-
books [10] and Active Papers [11]. The uniformity of language
means that portability is wide, but does limit generality to
experiments using these languages. There is also a problem
with versions of languages changing between the original and
the reproducing environment. A final type of tool is one which
is not limited to certain languages but is explicitly designed to
host experiments. The prime example is reprozip [12], which
is explicitly a tool for packaging experiments.

There are significant attractions of these methods. One
advantage these approaches tend to have over recomputation
is that the object to be distributed is usually much smaller
than a whole VM. They also have a general but often minor
disadvantages. This is that, to a greater or lesser extent, there is
still a dependency on the original software base. Sometimes
this is very broad, e.g. CDE only requires the same major
kernel version (e.g. 2.4) of Linux, making it a fairly minor
point.

We see recomputation as working very well with these
methods. The very fact that these methods can be used to
make experiments replicable relatively easily means that we
can embody the method in a VM and then use it to create
a VM containing the experiment. This serves both to allow
use to combine other techniques with recomputation, but also
to underwrite the other techniques. That is, if say a reprozip
experiment is recomputable now, it does not matter if some
later change to Linux invalidates the reprozip experiment, as
it can still be run in our VM.

There does remain a significant drawback of these methods.
This is that the experimenter has to use them. This sounds a



triviality, but we wish to minimise the demands we make on
experimenters, to maximise the chance that they will be able to
work with us. For example, an experimenter using reprozip has
to use reprozip for all parts of the experiment, and not forget
to use it for one part. In contrast, if an experimenter can give
us a virtual machine in which a kludgy set of experiments is
held together with string with no principled methodology, if
we can recompute it now we can recompute it in 20 years.

III. RECOMPUTATION.ORG

As we mentioned, the name recomputation arose because
the domain name was available. So we bought it, and since
then it has pointed at machines in the University of St An-
drews. We always expected to use Virtualisation tools such as
VirtualBox: a particular advantage of this tool is being free and
mainly open source. We were, however, delighted to discover
the existence of Vagrant, an additional tool which also makes
it particularly easy to use VirtualBox, as well as working with
other virtualisation environments such as VMWare. Vagrant
provides ‘boxes’, which are single files containing virtualised
machines plus metadata. With these two tools in place we were
able to move ahead with recomputation.org.

The two key principles of recomputation.org have been
• to deal in individual scientific experiments, or a number

of experiments combined in a single VM, and that
• it should be very easy indeed to recompute one of our

experiments.
From these two principles, plus the use of Vagrant, we estab-

lished the desideratum that when a user fires up one of VMs,
the experiment in that machine should run automatically. This
is easily achieved in vagrant through the use of ‘provisioning
scripts’. As an example, we provided an experiment for a
simple puzzle involving placing queens on the board [13]. We
have created a video which shows the experiment being rerun
at [14]. The point of this is that a user who has VirtualBox
and Vagrant can rerun this experiment with no knowledge
of the technology underlying it, or any additional installation
of software or tools. The experiment runs automatically and
deposits the results in the user’s space on the host machine,
so there is no need even to log in to the guest machine. When
the experiment finishes the user can look at the results and, if
they wish, log in to the guest machine to investigate the setup
in greater detail.

After eighteen months, we have about twenty experiments
stored at recomputation.org. Most of these have come from
two conferences where we worked with the programme chairs,
inviting authors to make their experiments recomputable. We
discuss these two conferences in detail below.

A. Tutorials

We ran two tutorials at international AI conferences to get
people interested in recomputation. In both cases, we did not
just present our ideas on recomputation, but also invited the
authors of accepted papers at the respective conference to
make their experiments recomputable. The benefits of this
approach are twofold. On one hand, authors got hands-on

experience with making experiments recomputable, and on the
other hand we became aware of issues with recomputability
in practice.

The approach we took to making experiments recomputable
was to create virtual machines (VMs) with Virtualbox2 and
Vagrant3. The VMs contain everything required to run (and in
some cases, analyse) the experiments done in the correspond-
ing paper published at the conference.

The first conference we considered was the 19th Interna-
tional Conference on Principles and Practice of Constraint
Programming in Uppsala, Sweden, in September 2013 (CP
2013). This is the main conference for the constraint program-
ming community and had about 150 participants. The second
conference was the 21st European Conference on Artificial
Intelligence in Prague, Czech Republic, in August 2014 (ECAI
2014). ECAI is one of the three big AI conferences and had
about 400 participants.

The main differences between those two conferences for
us were their sizes and scope. Both authors of this paper are
very familiar with constraint programming. The advantage for
CP 2013 was that the contents of the papers and experiments
was understandable for us. This was not the case for all
experiments we made recomputable for ECAI 2014, as many
more areas of AI, in which we have no background, were
within the scope.

This, together with the larger scale of ECAI, necessitated
a different approach to making experiments recomputable.
While for CP, we asked the authors of accepted papers to
package their experiments in a way that they thought they
could be reproduced and send them to us. We then created
the virtual machines to encapsulate the experiment, transferred
the files the authors sent to us, and installed all the necessary
software. This was a labour-intensive manual process that only
worked because the number of experiments was relatively low
and we were familiar with many of the software tools used in
the experiments.

For ECAI, we took an entirely different approach. We
provided the authors with access to a web interface that
allowed them to create, control, and package virtual machines
themselves. Instead of requiring busy academics to install
virtual machine software on their own machines, everything
was handled in the browser. We assumed basic familiarity
with Linux and provided basic instructions on how to use the
interface.

For CP 2013, we had 11 expressions of interest from
authors, which resulted in 6 recomputable experiments by the
time of the tutorial. For ECAI 2014, we received 14 expres-
sions of interest and had 6 recomputable experiments when
we gave the tutorial. In both cases, the tutorials themselves
were well-attended and received, in particular at ECAI where
we presented to a packed room with only standing room left.

2https://www.virtualbox.org/
3https://www.vagrantup.com/

https://www.virtualbox.org/
https://www.vagrantup.com/


B. Lessons learned

We became aware of many issues while working with
paper authors in the run-up to the tutorials. Many of these
raised limits of recomputability. Examples of these include
experiments that involve entities that are inherently not re-
computable, such as human subjects. This is an issue in
human-computer interaction research, where humans evaluate
for example user interfaces. While the evaluation itself cannot
be made recomputable with virtual machines, we can at least
make the analysis of the results recomputable.

Another limitation is posed by the resources some exper-
iments require. In one case, an author told us that running
the experiments he had done for the paper required about 1.5
years of CPU time. In another case, the experiments relied
on a graphics card with a GPU from a specific vendor. While
such experiments can still be packaged in a virtual machine in
a way that they are recomputable, there is no guarantee that
each individual is necessarily able to recompute them due to
a lack of resources.

We also encountered legal issues when making some of the
experiments recomputable. In one case, the authors compared
their approach to a proprietary commercial tool. While the
company provides free licences to academics, we were obvi-
ously not allowed to distribute this tool in a virtual machine.
We opted for a pragmatic solution of this issue and gave the
user the option of providing the tool themselves in a directory
that would be cross-mounted in the virtual machine such that
the experimental setup would pick it up and use if present,
else ignore the part of the experiments that required it.

Finally, there were a number of issues that provide excellent
motivation for our approach of using virtual machines. One
set of experiments required the installation of a theorem-
proving infrastructure that is difficult to install. Indeed, it does
not compile out of the box on a standard Linux installation.
This is obviously a major obstacle for potential users of the
software, especially when trying to recompute the experiments
of other researchers. Providing a VM with everything pre-
installed makes this much easier, and indeed the authors of
this particular experiment expressed their interest in having a
VM available not only for recomputation, but also as a basis
for future experiments.

In general, a major obstacle for recomputation in our
experience is the effort involved in making experiments recom-
putable and convincing researchers to invest this effort. The
numbers for the tutorials show that although there was quite a
lot of initial interest in our initiative, this translated to actual
recomputable experiments only in a fraction of the cases. For
CP 2013, where we put in most of the work ourselves, the
“conversion ratio” was higher than for ECAI 2014, where we
asked the authors to do most of the work.

In order for recomputation to become more widespread, we
need to continue working on making it as easy as possible
for experimenters to make everything they are doing recom-
putable. In addition, we need to work on making recomputabil-
ity a standard practice in the Computer Science community.

IV. KEY OBSTACLES TO RECOMPUTATION

There are many issues which could face recomputation.org,
and our campaign for recomputation in general. However,
we single one out in particular. This is the ease of making
experiments recomputable. To us, this is critical. We have
made it easy to recompute an experiment (courtesy of Vagrant
and VirtualBox), but it is not (yet) easy to take an experiment
you have just finished and make it recomputable.

We have taken two approaches, as outlined above. The first,
from CP 2013, was to get experimenters to send us raw files
and for us to convert them manually. However this approach
is highly non-scalable. The other approach, from ECAI 2014,
was to give researchers access to VMs in which they could
install required software and build their experiments. This is
more scalable (though still heavy in computational resources
at our end) since it uses much less of our time. However,
it imposes significant learning curves on experimenters. We
try to make these bearable with documentation and providing
one-to-one help, but this is still a significant problem.

We feel that this is the key obstacle to recomputation at
the minute because it is also a point in the manifesto: It
should be easier to make experiments recomputable than not.
At the moment, we do not know how to achieve this. There
are excellent approaches such as reprozip [12] which move
towards this, but they have a fundamental disadvantage: one
has to use the tool throughout building the experiment. We
want to reach people who have just finished an experiment
and only now want to make it recomputable: rerunning the
experiment in reprozip can be approximately the same level
of work to them as building the VM.

Just now we do not know how to achieve this goal. The best
we can offer is to chip away at it. This means incrementally
making it easier to contribute experiments. Also it means that
we should provide people as many routes to giving us experi-
ments as possible. For example, if people are comfortable with
Docker, we should be able to take an experiment packaged as
a Docker application and run an experiment in a VM prepared
to accept it. If that works we have now got the experiment in
a VM, without the user having to move outside their comfort
zone. The same would go for reprozip, ipython notebooks,
and any other tool that people might use to build and run
their experiments.

We believe firmly that there is not a “one true way” to build
and run experiments so we have to be flexible. But we hope,
either individually or in partnership with tools like reprozip
and Docker, to make it easy to build and run experiments
and make them recomputable. As we do this, we believe
that people will see the benefits of running experiments in a
recomputable way, just as they now seize the benefits of source
code control and insist that their collaborators use them too.

V. CONCLUSIONS

As well as ease of use, there are other important directions
we wish to progress in. For example, we feel that it would
be productive to work with conferences and journals at the



submission stage, and indeed before that. By making recompu-
tation available to prospective authors and reviewers, authors
would not have to make experiments recomputable after the
fact, but could do this from the start. Reviewers could look in
detail in experiments in silico, and published papers would be
more likely to have recomputable experiments.

We have enjoyed the first eighteen months of recomputa-
tion.org, the interest it has garnered, and all the very interesting
discussions we have had on it with many people.

Most importantly, our key ambition has not changed. We
wish to play our part in changing the way Computer Science
is done.

ACKNOWLEDGEMENTS

We especially want to thank three groups. First, we thank
very much all those who have deposited experiments at
recomputation.org. Their names can be found by exploring
recomputation.org. Second, those who have done a lot of the
work behind recomputation.org, namely Lakshitha de Silva,
John McDermott, and Alexander Konovalov. Third, we want
to thank those who have provided financial or other assistance
in various ways. This includes in particular the University of St
Andrews, University College Cork, the Software Sustainability
Institute, Microsoft Azure, an EPSRC Impact Acceleration
award, and the conferences CP 2013, ECAI 2014 and the
summer school EMCSR 2014.

Naturally we want to thank very much the very many
scientists we have discussed recomputation with, but they are
too numerous to list individually.

REFERENCES

[1] I. P. Gent, “The recomputation manifesto,” Apr. 2013.
[2] C. Goble, “Results may vary: reproducibility, open science,

and all that jazz,” http://www.slideshare.net/carolegoble/
ismb2013-keynotecleangoble, 2013, iSMB/ECCB Keynote.

[3] C. T. Brown, “Our approach to replication in computational science,”
http://ivory.idyll.org/blog/replication-i.html, Apr. 2012.

[4] C. T. Brown, A. Howe, Q. Zhang, A. B. Pyrkosz, and T. H. Brom, “A
Reference-Free Algorithm for Computational Normalization of Shotgun
Sequencing Data,” 2012.

[5] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX Association,
2005, pp. 41–41. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1247360.1247401

[6] “Olive executable archive,” https://olivearchive.org/.
[7] “Docker: Build, ship and run any app, anywhere,” https://www.docker.

com/.
[8] “Nix: the purely functional package manager,” https://nixos.org/nix.
[9] P. J. Guo, “CDE: A tool for creating portable experimental software

packages,” Computing in Science and Engineering, vol. 14, no. 4, pp.
32–35, 2012.

[10] F. Pérez and B. E. Granger, “IPython: a system for interactive scientific
computing,” Computing in Science and Engineering, vol. 9, no. 3, pp.
21–29, May 2007. [Online]. Available: http://ipython.org

[11] K. Hinsen, “Activepapers - computational science made reproducible
and publishable,” http://www.activepaper.org.

[12] F. S. Chirigati, D. Shasha, and J. Freire, “Reprozip: Using provenance to
support computational reproducibility,” in 5th Workshop on the Theory
and Practice of Provenance, TaPP’13, Lombard, IL, USA, April 2-3,
2013, A. Meliou and V. Tannen, Eds. USENIX Association, 2013.

[13] I. P. Gent, “Our first experiment: a chess puz-
zle,” http://www.recomputation.org/blog/2013/07/01/
our-first-experiment-a-chess-puzzle, 2013.

[14] ——, “Recomputation chess puzzle,” https://www.youtube.com/watch?
v=vlV1whY9VJc, 2014.

http://www.slideshare.net/carolegoble/ismb2013-keynotecleangoble
http://www.slideshare.net/carolegoble/ismb2013-keynotecleangoble
http://ivory.idyll.org/blog/replication-i.html
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://olivearchive.org/
https://www.docker.com/
https://www.docker.com/
https://nixos.org/nix
http://ipython.org
http://www.activepaper.org
http://www.recomputation.org/blog/2013/07/01/our-first-experiment-a-chess-puzzle
http://www.recomputation.org/blog/2013/07/01/our-first-experiment-a-chess-puzzle
https://www.youtube.com/watch?v=vlV1whY9VJc
https://www.youtube.com/watch?v=vlV1whY9VJc

	Recomputation: The concept, the name, and the manifesto
	Reflections on the Recomputation Manifesto
	Recomputation: what is it good for?
	It was twenty years ago today
	Recomputation =  Exact Reproduction of Results
	Comparison With Other Approaches

	recomputation.org
	Tutorials
	Lessons learned

	Key Obstacles To Recomputation
	Conclusions
	References

