
Hot-Rodding the Browser Engine: Automatic Configuration of JavaScript
Compilers

Chris Fawcett and Lars Kotthoff and Holger H. Hoos
University of British Columbia

Department of Computer Science
{fawcettc, larsko, hoos}@cs.ubc.ca

Abstract

Modern software systems in many application areas offer to
the user a multitude of parameters, switches and other cus-
tomisation hooks. Humans tend to have difficulties determin-
ing the best configurations for particular applications. Mod-
ern optimising compilers are an example of such software
systems; their many parameters need to be tuned for opti-
mal performance, but are often left at the default values for
convenience.
In this work, we automatically determine compiler parameter
settings that result in optimised performance for particular ap-
plications. Specifically, we apply a state-of-the-art automated
parameter configuration procedure based on cutting-edge ma-
chine learning and optimisation techniques to two prominent
JavaScript compilers and demonstrate that significant perfor-
mance improvements, more than 35% in some cases, can be
achieved over the default parameter settings on a diverse set
of benchmarks.

Introduction
JavaScript is one of the fundamental technologies underpin-
ning the world wide web today. From its humble beginnings
as a scripting language to support basic interactive content,
it has matured to the point where it powers large applications
for multi-billion dollar businesses. In addition to client-side
JavaScript run in the user’s browser, server-side JavaScript
is becoming increasingly popular for high-throughput, low-
latency web applications.

The JavaScript language (actually ECMAScript) is one of
the most popular languages today1. The increasing complex-
ity of JavaScript applications and the deployment in environ-
ments with high performance requirements has driven the
development of JavaScript compilers that produce more ef-
ficient, highly-optimised code. These compilers are complex
pieces of software themselves and make a plethora of con-
figurable parameters available to the user – one size does not
fit all, and how exactly a piece of code should be optimised
may depend on the particular application and execution en-
vironment.

While many JavaScript code optimisers exist, these usu-
ally focus on “compressing” the source code so that it can be

1https://github.com/blog/
2047-language-trends-on-github

transferred from the server to the browser more efficiently by
means of source-level transformations. Such optimisations
do not affect the semantics of the code nor how it is com-
piled, and they usually do not improve performance in terms
of running time.

There are many benefits to optimising not only the code
but also the JavaScript compiler for particular applications.
On mobile devices, power consumption is a major issue, and
optimised code can help reduce it. On a server, reducing
the running time of a software component means that more
transactions can be supported on the same hardware. On a
desktop machine, lag in interactions can be reduced and user
interfaces be made more responsive.

In the vast majority of applications, the JavaScript com-
piler is run in its default configuration, which has been cho-
sen by its developers to achieve robust performance across
a broad range of use cases. While these default settings
will provide reasonable performance in most situations, we
demonstrate that often, substantial gains can be realised eas-
ily, by searching the configuration space for compiler pa-
rameter settings that better optimise the JavaScript code pro-
duced for a particular application. With little effort, appli-
cations can be made more efficient and consume less re-
sources. This effect even holds for the large, heterogeneous
benchmark sets used during development of the JavaScript
engines themselves, upon which the default settings are pur-
portedly based.

Compared to traditional applications of automated algo-
rithm configuration, JavaScript code often runs for only rel-
atively short periods of time, but very frequently. The same
code can be run millions of times a day, each time a web-
site is loaded or a request is made to a server. Even small
improvements translate to massive aggregate savings in re-
sources.

We apply state-of-the-art machine learning techniques
for automatic parameter configuration to the two main
JavaScript compilers. On a range of popular and represen-
tative benchmarks, we show that performance can be im-
proved by more than 35% even with relatively modest con-
figuration effort, without any modification to the JavaScript
source code under consideration, or of the JavaScript engine
running it, other than the change in parameter configuration.

ar
X

iv
:1

70
7.

04
24

5v
1

 [
cs

.P
L

]
 1

1
Ju

l 2
01

7

https://github.com/blog/2047-language-trends-on-github
https://github.com/blog/2047-language-trends-on-github

Background
The idea of optimising the configuration of a compiler for
a particular application or set of applications is not new.
The Milepost GCC project Fursin et al. (2011) is perhaps
the most prominent example and uses machine learning to
dynamically determine the best level of optimisation. In an
iterative process, it can improve execution time, code size,
compilation time and other metrics. The approach has been
integrated into the widely-used GCC compiler. Other ap-
proaches that optimise the code generation for C programs
include Haneda, Knijnenburg, and Wijshoff (2005); Pan and
Eigenmann (2006); Plotnikov et al. (2013). While most of
these optimise the GCC compiler, there exists some work
on LLVM as well Fursin et al. (2014).

Another focus of research for automatic dynamic opti-
misation of compiled code has been the Jikes Java com-
piler Alpern et al. (2005). Hoste, Georges, and Eeckhout
(2010) use multi-objective evolutionary search to iden-
tify configurations that are Pareto-optimal in terms of
compilation time and code quality. Cavazos and O’Boyle
(2006) learn logistic regression models that predict the best
optimisation to apply to a method. Kulkarni and Cavazos
(2012) use artificial neural networks to determine the or-
der in which a set of optimisations should be applied during
compilation.

A major concern with all compiler configuration optimi-
sation approaches is the computational effort required to
determine a good or optimal configuration. If this is too
large, any benefits gained through the optimisation may be
negated. One approach to reducing the initial overhead is to
move the configuration process online and to learn to iden-
tify good configurations over successive compilations, but
other approaches have been explored in the literature (see,
e.g. Thomson et al. (2010); Ansel et al. (2012); Tartara and
Crespi Reghizzi (2013)).

Compilers that translate JavaScript to native code are rela-
tively new compared to compilers for more established lan-
guages likes C. While they are also highly optimised and,
in the case of JavaScriptCore through the use of the LLVM
framework, leverage at least some of the benefits decades of
optimisation effort has brought to compilers for other lan-
guages, we believe that performance improvements over the
default configuration are to be gained more easily here. Fur-
thermore, due to the widespread use of JavaScript in appli-
cations with hundreds of millions of end users (such as web
browsers), any performance improvements are likely to be
impactful.

JavaScript Optimisation
Existing JavaScript optimisers, such as Google’s Closure
Tools2 and Yahoo’s YUI compressor3, focus on source code
transformations that do not alter the syntax or semantics
of the code, but compress the representation by shortening
identifiers, removing white space or inlining code. The aim
of these optimisations is to reduce the size of the code that
has to be transferred from the server to the user’s browser,

2https://developers.google.com/closure/
3https://yui.github.io/yuicompressor/

thereby reducing the load time of the page. It focuses on ef-
ficiency before the code is run, but does nothing to improve
performance while the code is running.

Indeed, many of those tools and techniques are not spe-
cific to JavaScript, but are also applied to other resources
that are transferred to the client when a web page is loaded,
such as Cascading Stylesheets (CSS). In contrast, what we
propose here leverages the specific configuration options of
JavaScript engines to optimise the actual runtime behaviour
and efficiency of the code.

One attractive aspect of our approach is that it naturally
complements any extensions implemented to an existing
JavaScript engine (by performing our automated configura-
tion procedure again), and is able to search for improving en-
gine configurations while consuming commodity compute
cycles, without significant impact on development and en-
gineering effort. Running an automated configuration pro-
cedure on a commodity compute cluster for a week is sig-
nificantly cheaper than the salary of even a single engineer
for the same period, and optimising the engine configuration
automatically frees up human development resources, which
can then be used to further enhance the JavaScript engine
with new or improved optimisation mechanisms.

Automated Algorithm Configuration
Most software has switches, flags and options through which
the user can control how it operates. As the software be-
comes more complex or is used to solve more challenging
and diverse problems, the number of these options also tends
to increase. While some of these parameters control the in-
put/output behaviour of a given piece of software or algo-
rithm, others merely affect efficiency in terms of resource
use.

The algorithm configuration problem is concerned with
finding the best parameter configuration for a given algo-
rithm on a set of inputs, where the definition of “best” can
vary, depending on the given application scenario. In many
practical cases, the goal is to achieve better performance,
and this is how we use algorithm configuration here – we
want to achieve the same functionality, but with reduced
resource requirements. Specifically, in this work we focus
on minimizing the CPU time required, but in principle, any
scalar measure of performance can be used.

Finding the best parameter configuration for a given al-
gorithm is a long-standing problem. Humans tend to be bad
at solving it – evaluating parameter configurations requires
substantial effort, and interactions between parameters may
be complex and unintuitive. Minton (1996) notes that,

“Unlike our human subjects, [the system] experimented
with a wide variety of combinations of heuristics. Our
human subjects rarely had the inclination or patience
to try many alternatives, and on at least one occasion
incorrectly evaluated alternatives that they did try.”

Fortunately, there exist many automated procedures for al-
gorithm configuration. Perhaps the simplest approach is to
try all combinations of parameter values. This approach is
known as a full factorial design in the statistics literature
on experimental design and as grid search in computer sci-

https://developers.google.com/closure/
https://yui.github.io/yuicompressor/

ence (specifically, in machine learning); its main disadvan-
tage lies in its high cost – the number of configurations to
be evaluated grows exponentially with the number of pa-
rameters and their values. For most practical applications,
including the ones we consider in the following, complete
grid search is infeasible.

A commonly used alternative is simple random sam-
pling: Instead of evaluating every combination of param-
eter values, we randomly sample a small subset. This is
much cheaper in practice and achieves surprisingly good
results Bergstra and Bengio (2012). Indeed, in machine
learning, random sampling is a widely used method for
hyper-parameter optimisation. Unfortunately, when search-
ing high-dimensional configuration spaces, random sam-
pling is known to achieve poor coverage and can waste sub-
stantial effort evaluating poorly performing candidate con-
figurations.

A more sophisticated approach to algorithm configura-
tion is provided by so-called racing methods Birattari et al.
(2002), which iteratively evaluate candidate configurations
on a series of inputs and eliminate candidates as soon as they
can be shown to significantly fall behind the current leader
of this race. Local search based configurators, on the other
hand, iteratively improve a given configuration by applying
small changes and avoid stagnation in local optima by means
of diversification techniques (see, e.g., Hutter et al. (2009)).

More recently, model-based algorithm configuration
methods have gained prominence. These are based on the
key idea of constructing a model of how the parameters af-
fect performance; this empirical performance model is then
used to select candidate configurations to be evaluated and
updated based on the results from those runs. Arguably
the best known model-based configurator (and the current
state of the art) is SMAC Hutter, Hoos, and Leyton-Brown
(2011), which we use in the following.

SMAC and the other general-purpose algorithm config-
uration methods mentioned above have been applied with
great success to a broad range of problems, including
propositional satisfiability Hutter, Hoos, and Stützle (2007),
mixed integer programming Hutter, Hoos, and Leyton-
Brown (2010), machine learning classification and regres-
sion Thornton et al. (2013), and improving the performance
of garbage collection in Java Lengauer and Mössenböck
(2014).

The existence of effective algorithm configuration proce-
dures has implications for the design and development of
high-performance software. Namely, rather than limiting de-
sign choices and configurable options to make it easier (for
human developers) to find good settings, there is now an
incentive to introduce, expose and maintain many design
choices, and to let automated configuration procedures find
performance-optimized configurations for specific applica-
tion contexts. This is the core idea behind the recent Pro-
gramming by Optimization (PbO) paradigm Hoos (2012).

However, if software is not developed using specific tools
supporting PbO, the application of automated configuration
procedures requires the manual specification of a configu-
ration space based on the definitions of and constraints on
all configurable parameters. For complex and highly param-

eterised software, such as the JavaScript engines we con-
sider in this work, this process can be somewhat involved,
since it not only involves collecting the names and domains
(i.e., permissible values) for all parameters, but also condi-
tionality relations between them (e.g., parameter a’s value
only matters if parameter b has value x), and constraints that
rule out certain configurations (e.g., configurations known to
cause crashes or faulty behaviour).

Furthermore, in typical applications of automated algo-
rithm configuration, developers need to carefully construct a
set of ‘training’ inputs that is representative of those encoun-
tered in the intended application context of the algorithm or
software to be configured. If automated configuration is ap-
plied to produce a performance-optimised configuration us-
ing training inputs unlike those seen in typical use, the re-
sulting configuration is unlikely to perform as well in the
actual application as on the training set used as the basis for
configuration. (This, of course, also holds for manual con-
figuration, but the effect tends to become more pronounced
if more effective optimisation methods are used.)

Interestingly, JavaScript engine parameter optimisation
(and, more generally, certain flavours of compiler optimi-
sation) differs from most other applications of automated al-
gorithm configuration, in that it makes sense to use a train-
ing set consisting of a single input in the form of a program
source, whose performance is to be optimised by means of
compilation and execution with specific engine parameters.
Consider a popular Node.js application running a JavaScript
workload that does not change appreciably for each request
it receives. Any performance increases on that particular
workload are of immediate, significant benefit, and perfor-
mance decreases on other hypothetical workloads are irrel-
evant. These situations are ideal for our approach, as they
allow for the performance gains achieved in offline perfor-
mance optimisation to be leveraged across potentially hun-
dreds of millions of future runs of the software thus opti-
mised.

Automated Configuration of JavaScript
Engines

JavaScript Engines
We consider two state-of-the-art JavaScript engines in this
work; JavaScriptCore4 and Google’s V85. This choice was
motivated by the popularity and availability of these en-
gines, rather than absolute performance. We note that our
goal was not to compare the performance of the two engines,
but rather to investigate to what extent the default configura-
tion of each can be improved.

JavaScriptCore (or JSC) is an optimising JavaScript vir-
tual machine developed as the JavaScript engine for We-
bKit; it is used in Apple’s Safari browser on both OS X and
iOS, as well as in many other Apple software projects, web
browsers, and in a WebKit extension of Node.js. It contains a
low-level interpreter (LLInt), a simpler baseline just-in-time

4https://trac.webkit.org/wiki/
JavaScriptCore

5https://code.google.com/p/v8/

https://trac.webkit.org/wiki/JavaScriptCore
https://trac.webkit.org/wiki/JavaScriptCore
https://code.google.com/p/v8/

parameters of type
Engine # parameters Boolean integer real

JSC 107 40 54 13
V8 173 143 30 0

Table 1: For each of the two JavaScript engines considered
in this work, we give the total number of parameters in the
configuration space as well as how many have Boolean, in-
teger and real-valued domains, respectively. (There are no
parameters with categorical domains in either configuration
space.)

(JIT) compiler, another JIT compiler optimizing for low la-
tency (DFG JIT), and a JIT compiler optimizing for high
throughput (FTL JIT). All of these components can be ac-
tive simultaneously for different blocks of code, based on
execution thresholds, and blocks can be optimised (and de-
optimised) between them many times. In fact, a recursive
function can be executing in different JITs (or the LLInt) si-
multaneously at different levels of the recursion. Our JSC
parameter space contains 107 parameters (Table 1), where
most of the parameters have numerical domains. These nu-
merical parameters mostly control counters and thresholds
for activating various functionality, and for triggering opti-
misation/deoptimisation between the LLInt and the various
JITs.

The V8 JavaScript engine was initially developed for
Google’s Chrome browser and is now used in other web
browsers such as Opera, in server-side applications using
projects like Node.js6 and as a library embedded in other
software applications. V8 is somewhat unique in that it does
not contain an interpreter, but instead compiles JavaScript
code blocks directly to native machine code when they are
first encountered, which is then optimised continuously over
the course of running on a given input. Our interpretation
of V8’s parameter configuration space contains 173 param-
eters, primarily Boolean choices to enable or disable spe-
cific functionality. The remaining integer parameters control
various aspects of that functionality, including inlining lev-
els, loop unrolling, garbage collection thresholds and stack
frame sizing.

In order to specify the parameter configuration space for
our two JavaScript engines, JSC and V8, we determined the
name and type of each parameter, based on the documen-
tation and command-line parser source code. Unfortunately,
domains for the numerical parameters are not specified by
the developers, and only few conditional dependencies are
explicitly described. We therefore had to resort to educated
guesses; when in doubt, we aimed to err on the side of larger
domains (within reason). Each space was then refined by
sampling 100 000 random configurations and running the
engines on a simple problem instance to check for segmenta-
tion faults and other abnormal behaviour. For both engines,
many crashing configurations were thus identified, leading
to iterative refinement of the configuration spaces through
domain reduction as well as by adding forbidden parameter

6https://nodejs.org/

combinations and conditional parameter dependencies.

Benchmark Instances
We have selected four benchmark sets containing heteroge-
neous JavaScript problem instances, identified as relevant
to the JavaScript engine development community and end
users. We aimed to avoid bias towards benchmark sets pre-
ferred by particular development teams. In particular, we in-
cluded the benchmark sets developed by the developers of
JSC and V8.

Our benchmark suite comprises the Octane 2.0 7, Sun-
Spider 1.0.2 8, Kraken 1.1 9 and Ostrich Khan et al. (2014)
benchmark sets. We created harnesses that allowed us to ex-
ecute and measure these benchmarks programmatically, out-
side of a browser environment. We note that the techniques
we use here readily extends to browser-based settings, albeit
the integration effort would be higher.

Octane 2.0 is Google’s JavaScript compiler benchmark
suite and includes 18 real-world benchmarks that range over
different types of tasks, including a 2D physics engine, a
PDF rendering engine, a portable game system emulator,
a regular expression generator as well as instances testing,
e.g., node allocation and reclamation.

The SunSpider 1.0.2 benchmark set was developed by the
WebKit team and contains 26 problem instances represent-
ing a variety of different tasks that are relevant to real-world
applications, including string manipulation, bit operations,
date formatting and cryptography.

Kraken 1.1 was developed by Mozilla and contains 14
problem instances that were extracted from real-world ap-
plications and libraries. These benchmarks primarily cover
web-specific tasks (e.g., JSON parsing), signal processing
(e.g., audio and image processing), cryptography (e.g., AES,
PBKDF2, and SHA256 implementations) and general com-
putational tasks, such as combinatorial search.

Ostrich is based on benchmark suites for important nu-
merical computation tasks, such as OpenDwarf Feng et al.
(2012). While the other benchmarks focus on the types of
computations that are common on the web, Ostrich provides
a way to measure the performance on computations that are
becoming increasingly relevant as JavaScript gains in popu-
larity and is deployed in new contexts.

Experimental Setup
All of the experiments reported in the following were per-
formed using a single Microsoft Azure Cloud instance of
type “G5” running a standard installation of Ubuntu 15.04.
This instance type has two 16-core processors with a total of
448GB of RAM; it is the sole user of the underlying hard-
ware, based on a one-to-one mapping to two Intel Xeon E5-
2698A v3 processors.

We use JavaScriptCore r188124 and V8 version 4.6.40,
release builds compiled from source using GCC 4.9.2. Our

7https://developers.google.com/octane/
8https://www.webkit.org/perf/sunspider/

sunspider.html
9http://krakenbenchmark.mozilla.org

https://nodejs.org/
https://developers.google.com/octane/
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
http://krakenbenchmark.mozilla.org

version of the SMAC configurator is v2.10.0310, run using
Oracle Java JDK 1.8.0 25.

For each of our configuration scenarios, we performed 25
independent runs of SMAC with a 1 CPU-day runtime cut-
off, allocating a maximum of 60 CPU seconds to each run on
a particular problem instance. The objective value to be min-
imised by SMAC is the so-called Penalised Average Run-
time (PAR) score, which penalises timed-out and crashing
runs by assigning them an objective value of 10 times the
runtime cutoff (PAR-10), and otherwise assigns an objective
value of the CPU time used. This greatly disincentivizes bad
and invalid configurations, in order to bias the configurator
against selecting them.

The incumbent configuration with the best PAR-10 score
reported by SMAC after termination was selected as the final
result of the configuration process, and a subsequent valida-
tion phase was performed to run both the JSC/V8 default
configuration and the optimised configuration selected by
our procedure on the entire problem instance set. For these
validation runs, we perform 100 runs per configuration and
benchmark instance, and compute the PAR-10 score across
all runs for each configuration.

We require repeated runs to obtain statistically stable re-
sults. Individual runs are very short and subject to susbstan-
tial noise from the environment, e.g. operating system jobs
and contention for shared memory. Through repeated runs
and averaging, we achieve more realistic results that are less
affected by very short and very long outlier runs.

Empirical Results
The purpose of our experiments is twofold. First, we intend
to demonstrate that the performance across a set of diverse
benchmarks can be improved by using a different parame-
ter configuration than the default. This would indicate that
compiler developers may want to adjust the default settings
with which they ship their compilers, or that users that focus
on particular types of applications may wish to do so them-
selves. It also demonstrates the potential for techniques that
periodically adjust the configuration of the JavaScript engine
based on the types of JavaScript code run recently.

The second part of our experiments focusses on specific
individual benchmarks and shows that performance can be
improved significantly by specialising the compiler config-
urations to a specific piece of code to run, rather than be-
ing forced to accept tradeoffs due to competing requirements
by a heterogeneous set of benchmarks. This finding can be
exploited in two ways: Users who run the same piece of
JavaScript code over and over again (e.g., in a server-side
JavaScript application) can benefit from offline tuning, while
at the same time, very short online configuration runs for
code that a user’s browser accesses frequently can poten-
tially optimise its performance.

Results on Benchmark Sets
As can be seen in Table 2, we obtained substantial perfor-
mance improvements for JavaScriptCore (JSC) on the Os-

10http://www.cs.ubc.ca/labs/beta/Projects/
SMAC/

trich, Octane and Sunspider benchmark sets, indicating that
the default configuration of JSC leaves room for optimisa-
tion. This is not the case for V8, where we did not find
significant improvements for any of our benchmark sets,
which suggests that the default parameter values are already
well optimised. This may seem disappointing, but needs to
be viewed in light of the fact that compiler developers test
against these same benchmarks, and have much incentive,
through constant competition, to be successful in their ef-
forts to find the best configurations. It is therefore remark-
able that we achieved sizeable performance gains for JSC,
even on the SunSpider benchmark developed by the WebKit
team (as noted earlier, WebKit uses the JSC engine).

Results on Individual Benchmark Instances
When configuring the JavaScript engine parameters for indi-
vidual instances from our benchmark sets, we obtain much
greater improvements than for the complete sets. We se-
lected the five most promising individual instances for the
experiments in this section to keep the resource require-
ments moderate. We chose the instances based on where
we observed performance improvements in the experiments
that optimised the configuration across the entire benchmark
sets.

Three of these instances are taken from the Ostrich set:
graph-traversal, sparse-linear-algebra, and structured-grid,
and two instances stem from the Octane set: PDFjs and
Splay. Results from these experiments are shown in Table 3,
and we show additional empirical cumulative distribution
functions of running time and scatter plots for the default vs
optimised configuration in Figure 2 and Figure 1. On Ostrich
graph-traversal or structured-grid, not shown in the table and
figures, we have not obtained significant performance im-
provements for either of the two engines.

Overall, the performance improvements on these
individual-instance configuration scenarios are surprisingly
pronounced. JavaScriptCore achieves a relative performance
improvement of 35.23% over the default configuration on
the Octane Splay benchmark, and of 14.76% on Octane
PDFjs. For V8, we observed a 10.13% improvement over
the default on Ostrich sparse-linear-algebra.

Overall, these results are remarkable as even new code
optimisation methods often only result in performance im-
provements by single-digit percentages. We hypothesize that
there are some specific aspects of these problem instances
which differ sufficiently from the other instances in their re-
spective benchmark sets, that these configurations cannot be
successfully be used across those entire sets, but are very
effective on the individual instance in question. We present
some preliminary results towards identifying the source of
these improvements in the following.

Time to Find Improving Configurations
Even when considering the remarkable performance im-
provements seen in our individual-instance configuration ex-
periments, there may be some concern about the time re-
quired to find these improving configurations, given that we
used 25 independent SMAC runs of 1 CPU day to achieve
these.

http://www.cs.ubc.ca/labs/beta/Projects/SMAC/
http://www.cs.ubc.ca/labs/beta/Projects/SMAC/

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
PAR10 (CPU s) (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

P
(P

A
R

1
0
 C

P
U

 t
im

e
 <

 x
)

(a) JSC - Octane - PDFjs

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Default configuration PAR10 (CPU s) (log scale)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

T
u
n
e
d
 c

o
n
fi
g
u
ra

ti
o
n
 P

A
R

1
0
 (

C
P
U

 s
)

(l
o
g
 s

ca
le

)

(b) JSC - Octane - PDFjs

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
PAR10 (CPU s) (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

P
(P

A
R

1
0

 C
P
U

 t
im

e
 <

 x
)

(c) JSC - Octane - Splay

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Default configuration PAR10 (CPU s) (log scale)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

T
u
n
e
d
 c

o
n
fi
g
u
ra

ti
o
n
 P

A
R

1
0

 (
C

P
U

 s
)

(l
o
g
 s

ca
le

)

(d) JSC - Octane - Splay

Figure 1: For the Octane Splay and PDFjs invidual-instance configuration scenarios, we show empirical CDFs of runtime for
100 runs on the respective problem instance, along with scatter plots vs. the default configuration.

6.0 11.0 16.0 21.0 26.0
PAR10 (CPU s) (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

P
(P

A
R

1
0
 C

P
U

 t
im

e
 <

 x
)

(a) JSC - Ostrich - Sparse LA

6.0 11.0 16.0 21.0 26.0
Default configuration PAR10 (CPU s) (log scale)

6.0

11.0

16.0

21.0

26.0

T
u
n
e
d
 c

o
n
fi
g
u
ra

ti
o
n
 P

A
R

1
0

 (
C

P
U

 s
)

(l
o
g
 s

ca
le

)

(b) JSC - Ostrich - Sparse LA

6.0 11.0 16.0 21.0 26.0
PAR10 (CPU s) (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

P
(P

A
R

1
0
 C

P
U

 t
im

e
 <

 x
)

(c) V8 - Ostrich - Sparse LA

6.0 11.0 16.0 21.0 26.0
Default configuration PAR10 (CPU s) (log scale)

6.0

11.0

16.0

21.0

26.0

T
u
n
e
d
 c

o
n
fi
g
u
ra

ti
o
n
 P

A
R

1
0

 (
C

P
U

 s
)

(l
o
g
 s

ca
le

)

(d) V8 - Ostrich - Sparse LA

Figure 2: Considering the Ostrich Sparse Linear Algebra individual-instance configuration scenario, we show empirical cumu-
lative distribution functions (CDFs) of runtime for 100 runs on the respective problem instance, along with scatter plots vs. the
default configuration. The CDFs show the probability that a run will complete within a certain amount of time as a function of
the time, as observed empirically. That is, a finished run of an instance at a particular time increases the probability.

PAR10 [CPU s]
Instance set JSC default JSC configured rel. impr. [%] V8 default V8 configured rel. impr. [%]

Octane 2.0 1.653 1.556 5.89% 1.324 1.322 0.18%
Sunspider 1.0.2 4.546 4.010 11.79% 3.058 3.056 0.06%
Kraken 1.214 1.205 0.72% 0.650 0.650 0.03%
Ostrich 9.739 9.263 4.88% 7.109 7.062 0.66%

Table 2: Validation results using 100 runs per problem instance for each of our 4 configuration scenarios using complete
instance sets. We give results for the JavaScriptCore and V8 default configurations, as well as for the best configuration obtained
by SMAC (as identified by training performance). We note that the configurations found for JSC exhibit significant performance
improvements over the entire instance set, while those for V8 show only marginal improvement over the defaults.

PAR10 [CPU s]
Instance set JSC default JSC configured rel. impr. [%] V8 default V8 configured rel. impr. [%]

Ostrich sparse-linear-algebra 11.290 11.107 1.62% 11.401 10.246 10.13%
Octane splay 2.467 1.598 35.23% 1.127 1.093 2.95%
Octane pdfjs 1.679 1.431 14.76% 1.654 1.645 0.57%

Table 3: Validation results using 100 runs per problem instance for 3 configuration scenarios using a single problem instance,
one from our Ostrich set (Sparse Linear Algebra) and two from the Octane set (Splay and PDFjs). We omit two other ex-
periments on Ostrich instances (Graph Traversal and Structured Grid), where neither compiler showed any improvement after
configuration. We give results for the JavaScriptCore and V8 default configurations, as well as for the best configuration ob-
tained by SMAC (as identified by training performance).

Upon further investigation, in all of our individual-
instance configuration scenarios, the final optimised config-
uration was found in less than 3 CPU hours of runtime, with
initial improvements over the default configuration typically
found in less than 5 CPU minutes. Longer runtimes are re-
quired for the complete instance set configuration scenarios,
but even in those cases, the final configuration was found in
less than 6 CPU hours, with initial improving configurations
typically being found in less than 1 CPU hour.

In practice, a much smaller configuration budget would
be sufficient to achieve qualitatively similar results. In fact,
we observed the first improvements after only a few minutes
of configuration.

Changed Parameter Values
In order to better understand the source of our individual-
instance performance improvements, we empirically anal-
ysed the parameters changed from their default values us-
ing ablation analysis Fawcett and Hoos (2015). This ap-
proach has been previously used successfully to assess the
importance of parameter changes observed in applications
of automated algorithm configuration techniques to propo-
sitional satisfiability, mixed-integer programming and AI-
planning problems. Ablation analysis greedily constructs a
path through the parameter configuration space from the de-
fault to a given target configuration, selecting at each stage
the single parameter modification resulting in the greatest
performance improvement. The order of the resulting modi-
fications reflects the relative contribution to the overall per-
formance improvements obtained by the configuration pro-
cess, where later changes may occasionally achieve bigger
improvements that would not have been possible before ear-

lier modifications to the default configuration. The three pa-
rameter modifications resulting in the greatest performance
improvement for the Octane Splay and PDFjs instances are
shown in Table 4 and Table 5, respectively.

For JavaScriptCore on Octane Splay, the parameter
changes that achieved the most significant improvements are
related to object tracking and garbage collection. For the Oc-
tane PDFjs benchmark instance, the configuration process
resulted in modifications to various parameters controlling
memory management and the aggressiveness of the code op-
timisation. We note that numberOfGCMarkers is important
in both cases, where the value is changed to 1 from a de-
fault of 7. This parameter controls the amount of parallelism
in the garbage collector. Here, reduced parallelism avoids
overhead and improves overall performance.

While the portion of the relative improvement indicated
in the tables is approximate due to the nature of the ablation
analysis procedure, it appears that in both cases, over 90%
of the observed relative improvement can be explained by
the modification of the three parameters shown. This is con-
sistent with previous results using ablation analysis, where
in many scenarios, the vast majority of the improvement was
observed to be achieved by modifying a small set of parame-
ters. Of course, identifying these parameters in post hoc ab-
lation analysis is much easier than determining them within
the configuration process that gave rise to the optimised con-
figurations thus analysed.

Performance under Different Loads
Modern computers have multiple processors, with multiple
CPU cores each, and it is desirable to run multiple processes
simultaneously in order to take full advantage of the pro-

distance from default parameter modified from to approx. portion of rel. impr.

1 numberOfGCMarkers 7 1 38%
2 minCopiedBlockUtilization 0.9 0.196 47%
3 collectionTimerMaxPercentCPU 0.05 0.292 6%

Table 4: Parameters modified from the respective default settings for JavaScriptCore in order to achieve the three highest
marginal performance gains on the Octane 2.0 instance “Splay”, as determined by ablation analysis. Reported marginal im-
provement is only approximate, as the ablation analysis procedure is not performing the full 100 runs per instance validation as
in our configuration experiments.

distance from default parameter modified from to approx. portion of rel. impr.

1 likelyToTakeSlowCaseMinimumCount 20 56 41%
2 numberOfGCMarkers 7 1 40%
3 forceDFGCodeBlockLiveness false true 16%

Table 5: Parameters modified from the respective default settings for JavaScriptCore in order to achieve the three highest
marginal performance gains on the Octane 2.0 instance “pdfjs”, as determined by ablation analysis. Reported marginal im-
provement is only approximate, as the ablation analysis procedure is not performing the full 100 runs per instance validation as
in our configuration experiments.

cessing power thus provided. However, other factors, such
as shared caches, memory bandwidth and the I/O subsystem
can affect performance negatively, if too many processes are
vying for resources.

In order to investigate to which extent such factors may
impact our experimental setup, we ran different configura-
tions of workloads. First, we utilized all 32 cores of the ma-
chine used for our experiments by running 32 benchmark
experiments in parallel. Second, we ran only 8 experiments
in parallel, leaving the remaining cores for operating system
processes.

The results show that there are significant differences.
The graph-traversal instance of the Ostrich benchmark set
requires a large amount of memory and sufficient memory
bandwidth. With the machine fully loaded, we observe that
we easily find a parameter configuration that performs bet-
ter than the default. On the lightly loaded machine we are
unable to do so, and the benchmark runs significantly faster
than on the fully loaded machine, even with the improved
configuration. This clearly indicates a memory bottleneck
that can be mitigated through configuration.

The default configuration of JavaScriptCore performs
well on the SunSpider, Kraken and Octane benchmarks on
the fully-loaded machine, and we were unable to find a bet-
ter configuration of parameter settings. On the lightly loaded
machine, on the other hand, we did find better configu-
rations for SunSpider and Octane. This may indicate that
the JavaScriptCore default configuration is optimised for a
highly-loaded machine, which is unlikely, when the engine
is used inside a browser on a user’s desktop or laptop ma-
chine.

The fact that JavaScriptCore and V8 and exhibit different
behaviour with respect to how easy it is to improve on their
default configurations on machines with different load sug-
gests that the benchmarking and tuning the respective devel-
opment teams perform may use different experimental se-

tups.
This result shows that the optimisation of compiler flags

should be done not only for the machine that the code will
be run on, but also for the expected load on that machine –
configuring for a lightly loaded machine will yield different
results than configuring for a heavily loaded one. Further-
more, there is much promise in switching between different
configurations based on machine load.

Conclusions
JavaScript is ubiquitous in the modern world wide web and
increasingly spreading into other areas that have tradition-
ally been dominated by other programming languages. It is
used client-side in web browsers as well as server-side in
backend applications. Performance increasingly matters in
practical JavaScript, as applications grow in size and com-
plexity.

In part, the success of JavaScript has been due to the
availability of highly optimised compilers that produce ef-
ficient code that can be executed with minimal overhead.
Just-in-time compilation and dynamic optimisations further
increase the performance of the code. However, contempo-
rary compilers have a large number of parameters, most of
which are only poorly documented. While the default con-
figuration of these parameters provides good performance
in most cases, the parameter values need to be optimised for
the application at hand to get the best performance in all
cases. Exploring this huge and complex parameter space is
a daunting task.

We apply a state-of-the-art, general-purpose automated
configuration procedure with an excellent track record in
applications in machine learning and combinatorial optimi-
sation to the problem of finding the best parameter config-
uration for JavaScript engines for a particular set of prob-
lem instances. Sequential model-based optimisation lever-
ages state-of-the-art techniques from statistics, optimisation

PAR10,s (ID) at rank
Experiment Default 1 2 3 4 5 6 7 8 9 10

JSC (32) Octane PDFjs 1 2.163 2.009 (11) 2.020 (14) 2.037 (20) 2.037 (9) 2.042 (22) 2.046 (3) 2.047 (12) 2.052 (15) 2.060 (5) 2.074 (18)
JSC (32) Octane PDFjs 2 2.976 2.890 (4) 2.923 (1) 2.929 (2) 2.963 (5) 2.971 (7) 2.987 (3) 2.996 (9) 3.037 (11) 3.041 (6) 3.060 (15)
JSC (32) Octane PDFjs 3 2.875 1.996 (14) 2.005 (11) 2.035 (24) 2.038 (20) 2.043 (15) 2.045 (22) 2.053 (12) 2.067 (5) 2.068 (9) 2.071 (16)

JSC (8) Octane PDFjs 1 1.691 1.422 (11) 1.434 (14) 1.460 (22) 1.471 (24) 1.473 (2) 1.477 (5) 1.489 (20) 1.513 (3) 1.555 (16) 1.556 (18)
JSC (8) Octane PDFjs 2 1.687 1.426 (11) 1.431 (14) 1.463 (22) 1.466 (24) 1.470 (2) 1.471 (5) 1.479 (20) 1.516 (3) 1.555 (16) 1.558 (18)
JSC (8) Octane PDFjs 3 1.691 1.416 (11) 1.426 (14) 1.459 (22) 1.462 (24) 1.471 (5) 1.471 (2) 1.483 (20) 1.525 (3) 1.548 (18) 1.556 (16)

Table 6: Using the Octane pdfjs problem instance, we performed 100 independent runs of the 25 SMAC configurations for JSC,
as well as the JSC default configuration. This was repeated 3 times with the same random seeds, first allowing 32 simultaneous
runs and again allowing 8 simultaneous runs. We give the PAR10 score for the default configurations, as well as for the 10 best
configurations by validation score in each experiment (along with the configuration ID for each). The configuration ID for the
“best training” configuration of JSC on this instance is 14. It is clear that the best configurations are quite different in the case
of 32 simultaneous runs, even with a fixed instance and seeds. As this variability disappears in the case of 8 simultaneous runs,
we attribute it to noise from the load (and subsequent cache contention, etc.).

and machine learning to efficiently and automatically ex-
plore the parameter space of an algorithm and to home in
on promising configurations quickly.

Our experimental evaluation shows that notable perfor-
mance improvements can be achieved through automated
configuration. Specifically, we demonstrate that the perfor-
mance of JavaScriptCore can be substantially improved on
3 out of 4 heterogeneous benchmark sets in common use
for JavaScript compiler benchmarking. We also show that
JavaScriptCore (and to a lesser extent V8) can be specialised
to obtain runtime gains of up to 35% on tasks such as PDF
rendering. This is particularly significant as we are opti-
mising code that is run millions of times. In contrast, algo-
rithm configuration for combinatorial optimisation problems
considers the different setting where each problem instance
needs to be solved only once.

We believe that our results are promising and believe
that our approach enables many interesting applications and
follow-up work. We are currently planning additional work
including a broader set of experiments, additional analysis
of the parameter space structure, a deeper investigation into
the effect of machine load on runtime performance and con-
figuration, and an investigation of the transferability of these
configuration results to machines other than those used for
training.

Acknowledgements
Part of this research was supported by a Microsoft Azure for
Research grant. HH also acknowledges support through an
NSERC Discovery Grant.

References
Alpern, B.; Augart, S.; Blackburn, S. M.; Butrico, M.; Coc-

chi, A.; Cheng, P.; Dolby, J.; Fink, S.; Grove, D.; Hind,
M.; McKinley, K. S.; Mergen, M.; Moss, J. E. B.; Ngo, T.;
Sarkar, V.; and Trapp, M. 2005. The Jikes Research Vir-
tual Machine project: Building an open-source research
community. IBM Systems Journal 44(2):399–417.

Ansel, J.; Pacula, M.; Wong, Y. L.; Chan, C.; Olszewski, M.;
O’Reilly, U.-M.; and Amarasinghe, S. 2012. Siblingri-
valry: Online Autotuning Through Local Competitions.
In 2012 International Conference on Compilers, Architec-
tures and Synthesis for Embedded Systems, CASES ’12,
91–100. New York, NY, USA: ACM.

Bergstra, J., and Bengio, Y. 2012. Random Search for
Hyper-parameter Optimization. J. Mach. Learn. Res.
13(1):281–305.

Birattari, M.; Stützle, T.; Paquete, L.; and Varrentrapp, K.
2002. A Racing Algorithm for Configuring Metaheuris-
tics. In Genetic and Evolutionary Computation, 11–18.
Morgan Kaufmann.

Cavazos, J., and O’Boyle, M. F. P. 2006. Method-specific
Dynamic Compilation Using Logistic Regression. SIG-
PLAN Not. 41(10):229–240.

Fawcett, C., and Hoos, H. H. 2015. Analysing differences
between algorithm configurations through ablation. Jour-
nal of Heuristics 1–28.

Feng, W.-c.; Lin, H.; Scogland, T.; and Zhang, J. 2012.
OpenCL and the 13 Dwarfs: A Work in Progress. In 3rd
ACM/SPEC International Conference on Performance
Engineering, ICPE ’12, 291–294. New York, NY, USA:
ACM.

Fursin, G.; Kashnikov, Y.; Memon, A.; Chamski, Z.;
Temam, O.; Namolaru, M.; Yom-Tov, E.; Mendelson, B.;
Zaks, A.; Courtois, E.; Bodin, F.; Barnard, P.; Ashton, E.;
Bonilla, E.; Thomson, J.; Williams, C.; and OBoyle, M.
2011. Milepost GCC: Machine Learning Enabled Self-
tuning Compiler. International Journal of Parallel Pro-
gramming 39(3):296–327.

Fursin, G.; Miceli, R.; Lokhmotov, A.; Gerndt, M.;
Baboulin, M.; Malony, A. D.; Chamski, Z.; Novillo, D.;
and Vento, D. D. 2014. Collective mind: Towards practi-
cal and collaborative auto-tuning. Scientific Programming
22(4):309–329.

Haneda, M.; Knijnenburg, P. M.; and Wijshoff, H. A.
2005. Automatic selection of compiler options using
non-parametric inferential statistics. In 14th International
Conference on Parallel Architectures and Compilation
Techniques, 123–132.

Hoos, H. H. 2012. Programming by Optimization. Commun.
ACM 55(2):70–80.

Hoste, K.; Georges, A.; and Eeckhout, L. 2010. Auto-
mated Just-in-time Compiler Tuning. In Proceedings of
the 8th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, 62–72. ACM.

Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle, T.
2009. ParamILS: An Automatic Algorithm Configuration
Framework. J. Artif. Int. Res. 36(1):267–306.

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2010. Au-
tomated Configuration of Mixed Integer Programming
Solvers. In Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization
Problems, volume 6140 of Lecture Notes in Computer
Science, 186–202. Springer Berlin Heidelberg.

Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential Model-Based Optimization for General Algo-
rithm Configuration. In LION 5, 507–523.

Hutter, F.; Hoos, H. H.; and Stützle, T. 2007. Auto-
matic Algorithm Configuration based on Local Search.
In 22nd National Conference on Artificial Intelligence,
1152–1157. AAAI Press.

Khan, F.; Foley-Bourgon, V.; Kathrotia, S.; Lavoie, E.; and
Hendren, L. 2014. Using JavaScript and WebCL for Nu-
merical Computations: A Comparative Study of Native
and Web Technologies. SIGPLAN Not. 50(2):91–102.

Kulkarni, S., and Cavazos, J. 2012. Mitigating the Com-
piler Optimization Phase-ordering Problem Using Ma-
chine Learning. SIGPLAN Not. 47(10):147–162.

Lengauer, P., and Mössenböck, H. 2014. The Taming of the
Shrew: Increasing Performance by Automatic Parameter
Tuning for Java Garbage Collectors. In 5th ACM/SPEC
International Conference on Performance Engineering,
ICPE ’14, 111–122. ACM.

Minton, S. 1996. Automatically Configuring Constraint Sat-
isfaction Programs: A Case Study. Constraints 1:7–43.

Pan, Z., and Eigenmann, R. 2006. Fast and Effective Or-
chestration of Compiler Optimizations for Automatic Per-
formance Tuning. In International Symposium on Code
Generation and Optimization, CGO ’06, 319–332. Wash-
ington, DC, USA: IEEE Computer Society.

Plotnikov, D.; Melnik, D.; Vardanyan, M.; Buchatskiy, R.;
Zhuykov, R.; and Lee, J.-H. 2013. Automatic Tuning
of Compiler Optimizations and Analysis of their Impact.
In International Conference on Computational Science,
volume 18, 1312–1321. 2013 International Conference
on Computational Science.

Tartara, M., and Crespi Reghizzi, S. 2013. Continuous
Learning of Compiler Heuristics. ACM Trans. Archit.
Code Optim. 9(4):46:1–46:25.

Thomson, J.; OBoyle, M.; Fursin, G.; and Franke, B.
2010. Reducing Training Time in a One-Shot Machine
Learning-Based Compiler. In Languages and Compilers
for Parallel Computing, volume 5898 of Lecture Notes in
Computer Science, 399–407. Springer Berlin Heidelberg.

Thornton, C.; Hutter, F.; Hoos, H. H.; and Leyton-Brown,
K. 2013. Auto-WEKA: Combined selection and hyper-
parameter optimization of classification algorithms. In
KDD.

	Introduction
	Background
	JavaScript Optimisation
	Automated Algorithm Configuration

	Automated Configuration of JavaScript Engines
	JavaScript Engines
	Benchmark Instances
	Experimental Setup

	Empirical Results
	Results on Benchmark Sets
	Results on Individual Benchmark Instances
	Time to Find Improving Configurations
	Changed Parameter Values
	Performance under Different Loads

	Conclusions

