
A Regression-Based Methodology for Online Algorithm Selection

Hans Degroote,
Patrick De Causmaecker

KU Leuven
Department of Computer Science

CODeS & Imec-ITEC
Hans.Degroote@kuleuven.be

Bernd Bischl
Department of statistics

LMU Munich

Lars Kotthoff
Department of Computer Science

University of Wyoming

Abstract

Algorithm selection approaches have achieved impressive
performance improvements in many areas of AI. Most of the
literature considers the offline algorithm selection problem,
where the initial selection model is never updated after train-
ing. However, new data from running algorithms on instances
becomes available when algorithms are selected and run. We
investigate how this online data can be used to improve the
selection model over time. This is especially relevant when
insufficient training instances were used, but potentially im-
proves the performance of algorithm selection in all cases. We
formally define the online algorithm selection problem and
model it as a contextual multi-armed bandit problem, pro-
pose a methodology for solving it, and empirically demon-
strate performance improvements. We also show that our on-
line algorithm selection method can be used when no training
data whatsoever is available, a setting where offline algorithm
selection cannot be used. Our experiments indicate that a sim-
ple greedy approach achieves the best performance.

Introduction
Many AI problems are NP-complete. Nevertheless, in prac-
tice good solutions can be obtained by employing powerful
heuristics. Such heuristics work well in some cases, but not
in others. Due to the complex nature of the relationship be-
tween a heuristic and its performance on problem instances,
it is difficult to identify under which conditions it performs
well and, more generally, to identify the algorithm that is
best suited for solving a given problem instance. Learning
to identify in which cases an algorithm is best is known as
the algorithm selection problem (Rice 1976).

A common approach for the algorithm selection problem
uses algorithm portfolios (Huberman, Lukose, and Hogg
1997) – sets of algorithms that complement each other on
an instance distribution – and a mechanism to select from
among them. There has been much interest in algorithm se-
lection and portfolios, fuelled by practical successes in for
example SAT (Xu et al. 2008), CSP (O’Mahony et al. 2008)

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and AI planning (Helmert, Röger, and Karpas 2011) (see
(Kotthoff 2014) for a survey).

Algorithm selection often uses machine learning to build
models of how the algorithms in the portfolio behave. Most
algorithm selection approaches in the literature work by
building models based on performance data that was ob-
tained offline. These models are then used to make predic-
tions on new problem instances without ever changing them.
If an insufficient amount of training data was supplied, or if
it was not representative, performance will stay poor even
after processing a large number of online instances, as the
model is never updated.

In online algorithm selection, the new performance data
that becomes available when running the selected algorithm
on an instance is used to update the models after every se-
lection – instead of remaining static, the models are continu-
ously improved without the need to explicitly run additional
experiments or generate more data.

This paper gives a definition of the online algorithm se-
lection problem, models it as as a contextual multi-armed
bandit problem, and proposes a general methodology. We
empirically validate the methodology with experiments on a
diverse set of standard algorithm selection benchmarks. We
also show empirically that our online method is useful when
no training data is available.

Related Work
While most of the literature on algorithm selection consid-
ers the offline setting, a number of researchers have inves-
tigated online algorithm selection over the years. (Gagli-
olo and Schmidhuber 2010) consider the problem of assign-
ing resources to algorithms running in parallel. They present
a methodology for learning online which of a portfolio of
resource-allocating strategies is best and model the problem
as a bandit problem where each arm corresponds to an al-
locator. Their methodology does not take context (which in-
stance is being solved) into account, as we do in this paper,
and neither do they consider the lower-level goal of how to
use online data to learn within one such allocation strategy,
which is the focus of this paper.

The Eleventh International Symposium on Combinatorial Search 
(SoCS 2018)

37



Instead of selecting one algorithm to solve an instance
completely, an algorithm can also be selected to solve part
of an instance, with a series of such selections taking place
to solve the instance completely. This problem is studied in
the field of operator selection or heuristic selection, where
applications of online learning are also investigated. In such
cases, learning and improving of models is limited to a sin-
gle instance, and the features relate to the performance ob-
served so far on the instance. To the best of our knowledge,
there is no work on knowledge transfer between instances.
Examples include (Veerapen, Maturana, and Saubion 2012)
and (Phillips et al. 2015). Examples of other related methods
are (Lagoudakis and Littman 2000), where reinforcement
learning is used to decide whether and how to switch the
algorithm while solving a problem instance, and (Cicirello
and Smith 2005), where the problem of deciding with which
algorithm to retry solving an instance is modelled as a max
K-armed bandit.

Most closely related to this paper’s setting is the work
of (Malitsky, Mehta, and O’Sullivan 2013), but our method-
ology does not require additional experiments and has a
lower overhead. We discuss this work in the methodology
section.

The Online Algorithm Selection Problem
The goal of algorithm selection is to select for each in-
stance an algorithm that solves it well. It can be seen as a
cost-sensitive classification problem, where each instance is
labelled with the respective best algorithm and the cost is
the performance loss incurred due to an incorrect decision,
which differs from instance to instance and from algorithm
to algorithm (Bischl et al. 2012).

The core elements of algorithm selection are a set of in-
stances I , a set of features F characterising the instances,
a set of algorithms A (the portfolio), and a distribution D
over the instances I , defining for each instance its probabil-
ity of occurring. When an algorithm is run on an instance,
its performance is observed. Without loss of generality, let
the performance of any algorithm on any instance be an
element of the real numbers R. We assume that a higher
performance value is better. The performance of each algo-
rithm on each instance is defined by performance mapping
p : I × A → R : p(i, a) = r. This notation assumes deter-
ministic performance. A stochastic algorithm’s performance
on an instance is defined as a distribution over R.

Algorithm selection maps each instance to an algorithm.
To do so, first the vector of feature values of an instance
is calculated, defined by feature-value mapping Φ: I →
R|F | : Φ(i) = ϕ. Then the selection mapping λ is queried.
This mapping defines which algorithm should be used for
each feature vector: λ : R|F | → A : λ(ϕ) = a. So the
algorithm selected for instance i is: λ(Φ(i)). For non-
deterministic selection mappings, each feature vector is
mapped to a distribution over A.

The performance of a selection mapping on an instance
distribution is defined as the expected performance of the
algorithms it selects: P(λ,D) = Ei∼D[p(i, λ(Φ(i)))]. If the
selection mapping always selects the same algorithm, this

formula simplifies to the definition of the performance of
a single algorithm on an instance distribution: P(a,D) =
Ei∼D[p(i, a)].

The best possible selection mapping maps each instance
to the algorithm with the best expected performance on it.
Let λ∗ be the best selection mapping, with ∀i ∈ I ∀a ∈ A :
p(i, λ∗(Φ(i))) ≥ p(i, a). The goal of algorithm selection is
to find λ such that min(P(λ∗,D)− P(λ,D)).

A selection mapping is typically induced by training data
H: a set of records (i, ϕ, a, p(i, a)), where i is an instance,
ϕ its feature vector, a an algorithm and p(i, a) the observed
performance of the algorithm on the instance. Training data
is usually obtained by sampling the instance distribution,
computing the feature values of each sampled instance and
running all algorithms on all sampled instances.

Let β be the strategy that maps the training data H to a
selection mapping: β : H → Λ: β(H) = λ, where Λ de-
notes the set of all possible selection mappings. Typically,
supervised learning methods are used as such strategies.

In offline algorithm selection, the learning is one-shot:
the selection mapping is learned once, based on the train-
ing data, and never changed. However, more data becomes
available while the selection mapping is used: every time a
selection is made for a new instance, the instance’s features
are calculated and the performance of the selected algorithm
is observed. The idea of online algorithm selection is to add
this data to the set of training data H and to allow the strat-
egy β to update the selection mapping.

The high-level algorithm for online algorithm selection
is given in algorithm 1. The algorithm for offline algorithm
selection is very similar, but without lines 9 and 10: the per-
formance data that becomes available is never used and the
selection mapping is never updated.

Algorithm 1 Online algorithm selection
1: Input: training data H
2: Input: selection strategy β
3: Input: feature-vector mapping Φ
4: λ = β(H) # initialise selection mapping
5: for instance i do
6: ϕ = Φ(i) # calculate feature vector
7: a = λ(ϕ) # select algorithm
8: Solve i with a, observing performance p
9: H = H ∪ {i, ϕ, a, p} # update training data

10: λ = β(H) # update selection mapping

Assuming that strategy β and the algorithms A are de-
terministic, the performance of a strategy β over a series
of T instances is the average performance of the individ-
ual selection mappings it generates over time, P (β) =∑T
t=1

1
T P(λ(t)), where λ(t) is the selection mapping used

at time t. If the strategy is non-deterministic, its expected
performance is the expected value over all possible series of
selection mappings of length T .

Methodology for Online Algorithm Selection
The training data used for algorithm selection is usually
complete: for every training instance, the performance of all

38



algorithms is available. In contrast, the data generated dur-
ing the online phase is very incomplete: for each instance,
the performance of only one algorithm becomes available.

Many methods for offline algorithm selection cannot han-
dle incomplete data. Specifically, all strategies that need to
know for each training instance what the best algorithm is
cannot be used in the online setting, because only the per-
formance of a single algorithm is known. This includes all
methods that model algorithm selection as a classification
problem, directly predicting which algorithm is best, or ap-
proaches that use the performance of more than one algo-
rithm, such as (O’Mahony et al. 2008). A possible solution is
to impute the missing performance values, thereby obtaining
complete data; however, how to impute based on the sparse
online data is not obvious.

Alternatively, additional experiments can be run to deter-
mine the performance of each algorithm, but this comes at
the cost of significant overhead. This approach can be im-
proved by generating only data that is expected to be useful.
This idea is explored in (Malitsky, Mehta, and O’Sullivan
2013), who cluster instances and learn the best algorithm for
each cluster. A new online instance is assigned to a cluster
and its best algorithm is estimated. If the estimated best is
the same as the earlier best algorithm for the cluster, that al-
gorithm is used. If they differ, all algorithms are run on the
new instance, thereby generating complete data, and the best
algorithm for the cluster is re-calculated.

In this paper, we consider a regression-based approach to
algorithm selection, where each algorithm is modelled by a
separate regression model that predicts its performance and
the algorithm with the best predicted performance is cho-
sen. See (Hutter et al. 2014) for an overview of regression
techniques for performance prediction.

Regression-based methods are attractive for online algo-
rithm selection because they naturally handle the incomplete
online data: when a new instance is solved by a selected al-
gorithm, the observed performance is used to update the re-
gression model for that particular algorithm, while all others
remain unchanged. Algorithm 2 describes the greedy online
strategy that creates a selection mapping based on regres-
sion models and always greedily selects the algorithm with
the best predicted performance. The greedy strategy can be
used as input for the β of algorithm 1 (line 2) to create a fully
specified online algorithm selection method. Note that algo-
rithm 2 always completely retrains the regression models. If
the regression models are updatable, they can be updated in-
stead. Especially if the amount of training instances grows
large, updating becomes preferable, because retraining time
increases with the amount of training instances. For exam-
ple, a Mondrian Forest (Lakshminarayanan, Roy, and Teh
2014) could be used as updatable random forest.

Online Algorithm Selection as a Multi-armed
Bandit

The online greedy strategy defined by combining algo-
rithms 1 and 2 enables online learning: the regression mod-
els of the selected algorithms are expected to improve over
time, resulting in more accurate selections. However, if dur-

Algorithm 2 Greedy online algorithm selection strategy
1: Input: H
2: ∀a ∈ A : based on the relevant records in H , train re-

gression model ma : R|F | → R : ma(ϕ) = p̂, predict-
ing algorithm a’s performance on any feature vector ϕ.

3: Define λ : λ(i) = arg max
a∈A

(ma(Φ(i)))

4: Return λ

ing the training phase an algorithm was learned to be bad
while in reality it performs well on some of the instances,
this can be hard to correct, as the algorithm might never be
selected. Methods that occasionally try algorithms not ex-
pected to be best can achieve better performance: the im-
mediate loss in expected performance can be offset by later
gains thanks to having learned a better selection model. An
exploration vs. exploitation trade-off arises: one should not
explore too much, but not too little either.

The exploration vs. exploitation trade-off is studied in re-
inforcement learning. In particular, online algorithm selec-
tion can be modelled as a contextual multi-armed bandit
problem. In the standard, non-contextual, multi-armed ban-
dit problem, one faces a stream of instances, and each in-
stance must be assigned to one of the available ‘arms’. Each
arm has an unknown reward distribution, and whenever an
instance is assigned to it, that distribution is sampled, re-
sulting in an observed reward. The goal is to maximise the
sum of rewards. The sum of rewards is maximised by effi-
ciently trading off exploring (choosing arms not predicted to
be best) and exploiting (focusing only on the arm predicted
to be best). The contextual multi-armed bandit problem is
a generalisation where every time an instance must be han-
dled, a feature vector is presented, and where the underlying
reward distribution of each arm depends on the values of
those features. See (Li et al. 2010) for a formal definition of
the contextual multi-armed bandit problem.

Online algorithm selection can be modelled as a con-
textual multi-armed bandit problem. Each algorithm corre-
sponds to an arm, and solving an instance with an algorithm
corresponds to assigning an instance to an arm. When an al-
gorithm is selected, its underlying performance distribution
for that instance is sampled and its performance is observed,
which is equivalent to obtaining a reward. When selecting an
algorithm to run on an instance, the instance’s feature values
are known, providing the context. Maximising the sum of
rewards is equivalent to maximising the performance. This
insight helps solve the exploration vs. exploitation trade-off
for online algorithm selection, as proven methods from the
field of multi-armed bandits can be used.

A simple strategy to assure continued exploration is ε-
greedy, which selects the predicted best algorithm with prob-
ability 1 − ε and with probability ε a random algorithm.
It is parametrised by ε ∈ [0, 1]. The online strategy corre-
sponding to ε-greedy is similar to the one for greedy (Algo-
rithm 2), except that the selection mappings it produces are
stochastic: each algorithm has a probability ε

|A| of being se-
lected. The remaining 1−ε share is assigned to the predicted
best algorithm.

39



ε-greedy does not distinguish between algorithms with
high and low probability of being best, as it selects algo-
rithms at random. However, if one is almost certain that an
algorithm will not perform well on an instance, selecting it is
unlikely to provide interesting information. More advanced
techniques can make this distinction, by giving priority to
algorithms that are more likely to be better. In this paper,
we use a heuristic variant of the upper confidence bound ap-
proach (UCB). It calculates for each algorithm the predicted
performance p̂ and the standard deviation on this prediction
sd. The algorithm with the highest value for p̂ + sd · γ is
selected, where γ is a parameter that controls exploration.
Higher γ values result in more exploration. An algorithm
with predicted poor performance might be preferred over an
algorithm with better predicted performance if the variance
on its prediction is higher. This UCB variant is similar to the
one in (Srinivas et al. 2009). The online strategy correspond-
ing to UCB is equivalent to the greedy one of Algorithm 2,
but with ‘+sd ∗ γ’ added to the prediction of the model on
line 3.

Empirical Verification
In this section, we empirically demonstrate the potential of
the proposed methodology. We also demonstrate that it is
possible to learn useful algorithm selection models without
any offline training data. The experiments reported here ex-
tend preliminary experiments on online algorithm selection
published by us in (Degroote et al. 2016).

Experimental Setup
We use ASlib version 4.0 (Bischl et al. 2016a), a standard
benchmark of algorithm selection scenarios. Each scenario
consists of a set of instances, algorithms, and features. The
performance of each algorithm on each instance is known.
All features are numeric, and where feature values were
missing we imputed them with the mean of all respective
feature values in the scenario. The scenarios are diverse and
stem from many problem domains, such as satisfiability,
constraint programming and answer set programming. See
the left side of Table 1 for an overview of the scenarios used
and their characteristics. We did not consider for our exper-
iments instances that were presolved, i.e. solved during the
computation of the features, because for those instances no
algorithm selection is necessary.

We excluded ASlib scenarios with performance that is
not based on runtime, because online algorithm selection
is most relevant when time is limited and runtime is opti-
mised. We also excluded scenarios where the difference be-
tween the single best solver (always selecting the algorithm
that is best on average) and the offline algorithm selection
method’s performance across all instances (using a 10-fold
cross-validation) was very small (< 5% of the range of pos-
sible performance values), as in that case there is not much
room for our online algorithm selection approach. These are
scenarios CSP-2010, GRAPHS-2015, MAXSAT15-PMS-
INDU, SAT11-INDU, SAT12-INDU, SAT12-RAND and
SAT15-INDU. Complete results and all plots, including
from the excluded scenarios, are available in the online ap-

pendix1. On excluded scenarios, online algorithm selection
was observed to not be that useful, but neither did perfor-
mance drop compared to the offline approach.

We evaluate performance with the PAR10 (penalised run-
time 10) metric defined in ASlib, adding the cost to com-
pute the features. With PAR10, performance is equal to
the runtime when a solution is found within the scenario-
dependent time limit, and for time-outs performance is set
to ten times the time limit. Performance is normalised in re-
lation to the single best solver (0) and virtual best solver (1)
as (observed − singleBest)/(virtualBest − singleBest). The
single best solver is the (not necessarily unique) algorithm
with best observed performance when averaged over all in-
stances in the scenario. The virtual best solver is an oracle
that assigns each instance to an algorithm with best observed
performance for it. Note that normalised performance is neg-
ative when observed performance is worse than the single
best solver.

The instances of each scenario were randomly split into
three subsets: training, online and verification. The training
set contains the complete performance data of all algorithms
on the training instances and is used to initialise the regres-
sion models and the corresponding first selection mapping.
Then the online instances are handled one by one, selecting
an algorithm for each, and after every selection, the perfor-
mance of (only) the selected algorithm is made available and
the selection mapping can be retrained. The goal of the on-
line strategy is to maximise the observed performance on the
online instances, labelled “online performance”.

The instances in the verification set are held out and do
not provide any additional information to the online process.
They are used to evaluate the quality of the selection models
after processing all training and online instances and to eval-
uate how the models improve over time. All selections are
greedy on the verification instances. This enables quantify-
ing the quality of the selection model each strategy managed
to learn. This is called “verification performance”.

For a first set of experiments, we used 10% of the in-
stances as training set, leaving 80% for the online set and
10% for the verification set. This simulates a setting with
very little training data. Note that due to the differences
in number of instances per scenario, the fixed 10% train-
ing data lets us validate the method for different numbers of
training instances. For a second set of experiments, we did
not use any training data at all, leaving 90% of the instances
as online and 10% as verification. This simulates an extreme
case of insufficient training data. All experiments were run
ten times on different random training-online-verification
partitions.

We considered three online strategies: greedy (algorithm
2), ε-greedy (eGreedy), and upper confidence bound (UCB)
(both discussed in the previous section).

We compare the performance of our online methods to an
offline approach trained only on the training instances, la-
belled ‘offline’. This offers a baseline: if the online method
works, it should outperform an offline method that starts
from the same training data. As a second comparison, we

1https://bitbucket.org/HansDeg/socsmaterial

40



scenario Algorithms Instances Features Avg runtime (s) random forest 2015/2017 winner
ASP-POTASSCO 11 1090 138 156 0.7213 0.7044

BNSL-2016 8 1179 86 2259 0.8328 0.8444
CPMP-2015 4 527 22 1165 0.2525 0.6777

CSP-MZN-2013 11 4642 155 1320 0.9113 n/a
MAXSAT12-PMS 6 876 37 921 0.7694 0.8007

MAXSAT-PMS-2016 19 601 37 781 0.4889 0.5723
MAXSAT-WPMS-2016 18 630 37 1090 0.7220 0.9102

PROTEUS-2014 22 2047 198 719 0.7860 0.8575
QBF-2011 5 1368 46 2064 0.8809 0.8423
QBF-2014 14 1254 46 530 0.7961 n/a
QBF-2016 24 825 46 667 0.7213 0.5691

SAT03-16 INDU 10 1967 483 1627 0.3763 0.0084
SAT11-HAND 15 296 115 3287 0.7820 0.6866
SAT11-RAND 9 600 115 2532 0.9385 0.9568
SAT12-ALL 31 1594 115 723 0.7793 0.7445

SAT12-HAND 31 762 115 855 0.7885 0.7377

Table 1: Left side: characterisation of the ASlib scenarios used in the experiments (number of algorithms, number of non-
presolved instances, number of features and avg runtime per instance). Right side: comparison of the random forest regression
method used in our experiments with the winners of the 2015 and 2017 ASlib competition, for scenarios used in those compe-
titions (performance values as reported in the respective competition; best value if used in both. Random forest was evaluated
in the same way as the competitors in the 2015 competition, but scenarios of the 2017 competition (italicised results) were
evaluated using less training data). Performance is normalised to the single best solver (0) and virtual best solver (1); higher is
better.

provide access to the complete data (the performance of all
algorithms instead of only the performance of the selected
algorithm) of any online instance after a selection for it has
been made, and then retrain each algorithm’s model based
on that complete data. This method, labelled ‘allData’, is
expected to be better than any online method because it has
access to much more data than the online methods. This
method offers an upper bound on the performance. However,
the upper bound is non-strict, as it is technically possible for
a model trained on less data to be better. Note that actually
using this allData method would impose a big overhead in
computation time, because of the additional algorithm runs
required. The overhead can be quantified by multiplying the
‘Algorithms’ column with the ‘Avg runtime’ column of Ta-
ble 1, subtracting 1 from the ‘Algorithms’ column (the se-
lected algorithm is always run anyway).

We used random forests (Liaw and Wiener 2002) to cre-
ate the regression models for all online and offline meth-
ods. Standard deviations were estimated with the Jackknife
method (Sexton and Laake 2009). Random forests are a
state-of-the-art method for algorithm selection (Hutter et al.
2014), used for example in the award-winning SATzilla sys-
tem (Xu et al. 2008). The right side of Table 1 shows the
performance of the random forest method we use compared
to the performance of the winners of the algorithm selec-
tion competitions of 2015 (Kotthoff, Hurley, and O’Sullivan
2017) and 2017 (Lindauer, van Rijn, and Kotthoff 2017).
The performance of the random forest models was deter-
mined with a 10-fold cross-validation. The systems used in
the competitions were more sophisticated than our simple al-
gorithm selection approach; they included feature selection
and presolvers, which we do not consider. Still, as Table 1

shows, the results obtained by the random forest method we
use are competitive, indicating that it is indeed a state-of-
the-art method for the benchmark we consider.

The regression models were retrained every time 10 new
data points were available. Retraining more frequently did
not improve performance significantly, but did increase
overhead. The time spent retraining regression models was
negligible compared to algorithm runtimes.

We used R-packages llama (Kotthoff 2013), mlr (Bischl
et al. 2016b), and batchtools (Lang, Bischl, and Surmann
2017) to run the experiments.

The ε of ε-greedy was set to 0.05 and the γ of UCB to
1. Parameter tuning experiments for the setting with 10%
training data and 80% online data indicated that the best
performance was observed for ε = 0 and γ = 0. However,
this would make both strategies equivalent to greedy, so we
chose different values that ensure exploration.

Results
Table 2 shows the results for 10% training data. The on-
line greedy approach consistently outperforms the offline
approach in terms of online performance. It closes on av-
erage an additional 7.03% of the gap between the single
best solver and the virtual best solver compared to the of-
fline strategy. The greedy strategy always completely out-
performs the exploring strategies (ε-greedy, UCB and ran-
dom), which do not even outperform the offline strategy. Ap-
parently they lose too much performance when exploring.
The greedy strategy appears to be by far the best at solv-
ing the exploration vs. exploitation trade-off when a small
amount of training data is available.

41



scenario offline greedy ε-greedy UCB allData

ASP-POTASSCO 0.5120 0.4966 0.4500 0.3147 0.6987
BNSL-2016 0.6906 0.7503 0.6495 0.6737 0.7902
CPMP-2015 0.1758 0.2145 0.1522 0.176 0.2514

CSP-MZN-2013 0.8320 0.8670 0.7807 0.4407 0.9026
MAXSAT12-PMS 0.5247 0.6127 0.4456 0.3867 0.7048

MAXSAT-PMS-2016 0.1096 0.2307 -0.0797 -0.4016 0.4182
MAXSAT-WPMS-2016 0.0232 0.2015 -0.1382 -0.2227 0.4896

PROTEUS-2014 0.4183 0.4268 0.3632 0.3597 0.5380
QBF-2011 0.6676 0.7438 0.6781 0.6548 0.8179
QBF-2014 0.4388 0.5427 0.4437 0.3871 0.6865
QBF-2016 0.1182 0.2168 0.1207 -0.0570 0.5090

SAT03-16 INDU -0.1087 -0.0067 -0.0776 -0.1237 0.1375
SAT11-HAND 0.2169 0.2625 0.2134 0.2512 0.5186
SAT11-RAND 0.8577 0.8910 0.8333 0.8369 0.9190
SAT12-ALL 0.4149 0.4804 0.3975 0.3341 0.6537

SAT12-HAND 0.2796 0.3660 0.3377 0.3173 0.6297

mean 0.3857 0.4560 0.3481 0.2705 0.6040

Table 2: Online performance (avg. performance on the online instances) with 10% training data. Performance is normalised in
relation to the single best solver (0) and virtual best solver (1). Online strategies with results better than strategy ‘offline’ are
bold.

Table 2 also shows that the offline strategy with 10% train-
ing data already consistently outperforms the single best
solver (except on the SAT03-16 INDU scenario). This illus-
trates that a small number of training instances often suffices
to perform useful offline algorithm selection.

Table 3 shows the verification performance, measuring
how well the strategies managed to learn a good selection
model. Recall that this verification performance is obtained
by using each strategies’ models at the end of the online
phase to make greedy selections on the held-out verification
instances (thus the exploring strategies no longer explore;
only the quality of the models they managed to learn is eval-
uated). All online strategies learn better models than the of-
fline strategy, which is as expected because they have access
to more training data. Interestingly, greedy, which never ex-
plicitly explores, does a good job at learning. It closes on
average an additional 13.66% of the gap between the single
best solver and the virtual best solver compared to the of-
fline strategy. UCB and ε-greedy do not perform better than
greedy on average. This implies that in the setting with 10%
training data, there is no benefit to exploring: the cost of ex-
ploration is high (as can be seen in Table 2) and no better
models are learned.

The explanation for the good performance of greedy is
likely that the initial training instances provided a suffi-
ciently good baseline for the strategy to continue learning a
good selection mapping. Recent theoretical results from the
multi-armed bandit community show that this is indeed pos-
sible (Kannan et al. 2018), and a recent applied paper (Bi-
etti, Agarwal, and Langford 2018), where contextual multi-
armed bandit methods are evaluated on over 500 datasets,
even states that ‘across these experiments we show that min-
imizing the amount of exploration is a key design goal for
practical performance. Remarkably, many problems can be

−0.5

0.0

0.5

1.0

0 1000 2000 3000 4000
Nr of online instances handled

eGreedy
greedy
greedyFI
UCB

Figure 1: CSP-MZN-2013 (11 algorithms, 4642 instances,
155 features) without training data: verification performance
over time (avg. performance on the verification instances,
making greedy selection based on the regression models
used at that time). Normalised to single best solver (0) and
virtual best solver (1). Full lines show the means, dashed
lines one standard deviation above and below.

solved purely via the implicit exploration imposed by the
diversity of contexts’. Our results indicate that online algo-
rithm selection is one of the problems that can be solved
via only the implicit exploration imposed by the contexts
(meaning the differences in instances encountered).

We now discuss the results of the experiments without
training data. The random forest implementation we used
requires at least 5 training instances to initialise a regression
model, so the online phase must start with round robin selec-

42



scenario offline greedy ε-greedy UCB allData

ASP-POTASSCO 0.4794 0.4857 0.4923 0.4896 0.6446
BNSL-2016 0.7453 0.7685 0.7279 0.8099 0.8303
CPMP-2015 0.1569 0.2489 0.2082 0.1265 0.2082

CSP-MZN-2013 0.8247 0.8731 0.8714 0.8665 0.9114
MAXSAT12-PMS 0.5623 0.7789 0.7657 0.7064 0.7668

MAXSAT-PMS-2016 0.1194 0.3264 0.3916 -0.2765 0.2928
MAXSAT-WPMS-2016 0.2016 0.5350 0.5046 0.4925 0.7180

PROTEUS-2014 0.4000 0.4403 0.4340 0.4201 0.5216
QBF-2011 0.6902 0.8232 0.8705 0.8402 0.9105
QBF-2014 0.4373 0.6384 0.6424 0.5763 0.7915
QBF-2016 0.0594 0.2964 0.2211 0.1741 0.6653

SAT03-16 INDU -0.0031 0.0894 0.0679 0.0678 0.2803
SAT11-HAND 0.2894 0.4636 0.4674 0.3835 0.6842
SAT11-RAND 0.8674 0.9429 0.9249 0.9092 0.9155
SAT12-ALL 0.3967 0.5329 0.5002 0.5362 0.7625

SAT12-HAND 0.3137 0.4811 0.4982 0.4514 0.7662

mean 0.4087 0.5453 0.5368 0.4734 0.6669

Table 3: Verification performance (avg. performance on the verification instances, making greedy selections based on the
regression models learned during the online phase) with 10% training data. Performance is normalised in relation to the single
best solver (0) and virtual best solver (1). Online strategies with results better than strategy ‘greedy’ are bold.

−0.5

0.0

0.5

1.0

500 1000
Nr of online instances handled

eGreedy
greedy
greedyFI
UCB

Figure 2: SAT12-ALL (31 algorithms, 1594 instances, 115
features) without training data: verification performance
over time (avg. performance on the verification instances,
making greedy selection based on the regression models
used at that time). Normalised to single best solver (0) and
virtual best solver (1). Full lines show the means, dashed
lines one standard deviation above and below.

tion until each algorithm has solved 5 instances. After this, a
first selection mapping can be initialised, which is unlikely
to be good, but upon which an online strategy can improve.
Figure 1 shows an example, plotting the verification per-
formance over time for all online strategies and the allData
strategy. As can be seen in the plot, the initial selection map-
pings, obtained after the round robin selections (based on 55
instances; 5 for each of the 11 algorithms), are much worse
than the single best solver, but as more online instances are

handled, they quickly start outperforming it. In this example
the selection mappings learned by the online strategies even
approach the performance of the selection mapping learned
by the benchmark strategy that has access to all data (all-
Data), despite the online strategies having access to only a
fraction (1/11) of the data. Note also that the models learned
by the online strategies all perform similarly. This illustrates
that, on this scenario, the greedy strategy still does not learn
models that are significantly worse than the strategies that
explicitly explore, even without initial training data.

Table 4 shows the online and verification results for all
scenarios when no initial training data is available. Having
access to a lot of online instances is important here, because
the system needs time to make up for the bad initial perfor-
mance during the round-robin phase and the phase when the
selection mappings perform poorly. As there is no offline
data, the offline benchmark is excluded, because it cannot
learn a model. In 9 of 16 scenarios, the greedy strategy with-
out training data outperforms the single best solver, but on
average it still does worse than the single best solver. How-
ever, when only the scenarios with more than 1000 instances
are considered, the single best solver is outperformed in 6
out of 8 scenarios, and on average 19.68% of the gap be-
tween the single best solver and the virtual best solver is
closed. Furthermore, as can be seen from the verification
performances in Table 4, in all but one of the scenarios,
greedy’s selection mapping after processing all online in-
stances outperforms the single best solver, closing on aver-
age (over all scenarios) 37.49% of the gap between single
best solver and virtual best solver. This implies that, had the
greedy strategy had access to more online instances, it would
have outperformed the single best solver on all but one sce-
nario, even if it would stop processing further online data; it
just needed more time (more online instances) to make up

43



Online performance Verification performance

scenario greedy ε-greedy UCB allData greedy ε-greedy UCB allData

ASP-POTASSCO 0.1656 0.1154 -0.0289 0.5580 0.3030 0.2821 0.4376 0.6936
BNSL-2016 0.5524 0.4389 0.3583 0.7071 0.7328 0.7559 0.6919 0.8368

CSP-MZN-2013 0.6827 0.5988 0.6133 0.8472 0.8207 0.8212 0.7946 0.9117
PROTEUS-2014 0.1099 0.0504 0.0945 0.4296 0.3674 0.3045 0.3357 0.5364

QBF-2011 0.4228 0.3815 0.4031 0.7374 0.709 0.7114 0.6766 0.9031
QBF-2014 0.0341 0.0050 -0.0457 0.5197 0.3437 0.3917 0.379 0.8038

SAT12-ALL -0.0970 -0.1668 -0.1604 0.3884 0.2284 0.2160 0.2598 0.7289
SAT03-16 INDU -0.2964 -0.2734 -0.3254 0.0743 0.0210 -0.0181 -0.0821 0.2804

CPMP-2015 0.0825 0.0565 0.0318 0.1931 0.2324 0.3353 0.2630 0.2704
MAXSAT12-PMS 0.3145 0.1717 0.1803 0.5650 0.7064 0.6938 0.6766 0.8383

MAXSAT-PMS-2016 -1.1673 -1.3210 -1.5840 -0.6199 0.1500 0.3824 -0.2705 0.6391
MAXSAT-WPMS-2016 -1.2317 -1.5829 -1.5596 -0.4930 0.2645 0.0744 0.1289 0.6950

QBF-2016 -0.4711 -0.5233 -0.6815 0.1465 -0.0062 -0.0621 -0.1092 0.6643
SAT11-HAND -0.1188 -0.1386 -0.1645 0.2094 0.1633 0.2224 0.2677 0.6416
SAT11-RAND 0.5180 0.5036 0.4808 0.7637 0.8298 0.7826 0.8555 0.9153
SAT12-HAND -0.1861 -0.2214 -0.1804 0.2577 0.1326 0.2341 0.1675 0.7450

mean -0.0429 -0.1191 -0.1605 0.3303 0.3749 0.3830 0.3420 0.6940

Table 4: Online performance (avg. performance on the online instances) and verification performance (avg. performance on the
verification instances, making greedy selections based on the regression models learned during the online phase) when there is
no training data. Performance is normalised in relation to the single best solver (0) and virtual best solver (1). Online results
(left part) better than the single best solver (> 0) are bold. Verification results (right part) better than greedy are bold. Scenarios
above the horizontal line contain more than 1000 instances, below less.

for the influence of the initial poor performance on the av-
erage. The implication is that even without initial training
instances, the greedy strategy consistently performs well.

Figure 2 shows the verification performance over time for
the SAT12-ALL scenario, when no training data is available.
On this scenario, our online approach did not outperform
the single best solver (left side of table 4). However, it did
manage to learn a selection mapping that outperforms the
single best solver (right side of table 4), and if more online
instances had been available, it would have outperformed it.
The plot shows that on the first 155 instances (5 for each of
the 31 algorithms), performance is very bad because random
selections are made. Afterwards, a first model is initialised,
which performs worse than the single best solver. The mod-
els then improve as more instances are handled. Starting at
about 500 instances, the models of the online strategies make
better predictions than the single best solver. As more in-
stances are handled, the quality of the models improves fur-
ther. By the end of the simulation the online strategies have
closed over 20% of the gap between the single best solver
and the virtual best solver.

To conclude the experimental results: greedy appears to
be a robust and well-performing strategy for online algo-
rithm selection, especially when a small amount of train-
ing data is available, but also when starting without training
data. This is surprising at first sight, but lies in line with re-
cent insights from contextual multi-armed bandit research,
which show that a pure greedy approach is often prefer-
able (Kannan et al. 2018; Bietti, Agarwal, and Langford
2018).

Conclusions and Future Work

In this paper, we considered the online algorithm selection
problem. We modelled it as a contextual multi-armed bandit
problem, and proposed a methodology based on construct-
ing a regression model for each algorithm. Our methodol-
ogy can process the kind of incomplete online data gener-
ated during the algorithm selection process, consisting of the
performance of only the selected algorithm for each online
instance. Our empirical validation on ASlib demonstrated
that processing online data with the proposed methodology
results in improved performance. A simple greedy online
method that does not explicitly explore had the best over-
all performance; explicitly exploring does not seem worth-
while for online algorithm selection. The experiments also
showed that even when no training data is available – a set-
ting where offline algorithm selection does not work – on-
line algorithm selection eventually learns to outperform the
single best solver. In this setting as well, the simple greedy
method performed best. Overall, we showed that the greedy
strategy is a good choice for the online algorithm selection
problem.

Future work includes investigating whether more ad-
vanced solutions to the contextual multi-armed bandit prob-
lem, such as LinUCB (Li et al. 2010) and ILoveToCon-
Bandits (Agarwal et al. 2014), can outperform the greedy
method, and to investigate how the characteristics of an al-
gorithm selection scenario influence the performance gained
by applying online algorithm selection.

44



Acknowledgments
Work supported by the Belgian Science Policy Office
(BELSPO) in the Interuniversity Attraction Pole COMEX
(http://comex.ulb.ac.be).

References
Agarwal, A.; Hsu, D.; Kale, S.; Langford, J.; Li, L.; and
Schapire, R. 2014. Taming the monster: A fast and simple
algorithm for contextual bandits. In International Confer-
ence on Machine Learning, 1638–1646.
Bietti, A.; Agarwal, A.; and Langford, J. 2018. Practical
evaluation and optimization of contextual bandit algorithms.
arXiv preprint arXiv:1802.04064.
Bischl, B.; Mersmann, O.; Trautmann, H.; and Preuß, M.
2012. Algorithm selection based on exploratory landscape
analysis and cost-sensitive learning. In Proceedings of the
14th annual conference on Genetic and evolutionary com-
putation, 313–320. ACM.
Bischl, B.; Kerschke, P.; Kotthoff, L.; Lindauer, M.; Malit-
sky, Y.; Fréchette, A.; Hoos, H.; Hutter, F.; Leyton-Brown,
K.; Tierney, K.; et al. 2016a. Aslib: A benchmark library for
algorithm selection. Artificial Intelligence 237:41–58.
Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.;
Studerus, E.; Casalicchio, G.; and Jones, Z. M. 2016b. mlr:
Machine Learning in R. Journal of Machine Learning Re-
search 17(170):1–5.
Cicirello, V. A., and Smith, S. F. 2005. The max k-armed
bandit: A new model of exploration applied to search heuris-
tic selection. In AAAI, 1355–1361.
Degroote, H.; Bischl, B.; Kotthoff, L.; and De Causmaecker,
P. 2016. Reinforcement learning for automatic online algo-
rithm selection-an empirical study. In ITAT 2016 Proceed-
ings, volume 1649, 93–101.
Gagliolo, M., and Schmidhuber, J. 2010. Algorithm selec-
tion as a bandit problem with unbounded losses. In Interna-
tional Conference on Learning and Intelligent Optimization,
82–96. Springer.
Helmert, M.; Röger, G.; and Karpas, E. 2011. Fast Down-
ward Stone Soup: A Baseline for Building Planner Portfo-
lios. In ICAPS-2011 Workshop on Planning and Learning
(PAL), 28–35.
Huberman, B. A.; Lukose, R. M.; and Hogg, T. 1997. An
Economics Approach to Hard Computational Problems. Sci-
ence 275(5296):51–54.
Hutter, F.; Xu, L.; Hoos, H. H.; and Leyton-Brown, K. 2014.
Algorithm runtime prediction: Methods & evaluation. Arti-
ficial Intelligence 206:79–111.
Kannan, S.; Morgenstern, J.; Roth, A.; Waggoner, B.; and
Wu, Z. S. 2018. A smoothed analysis of the greedy al-
gorithm for the linear contextual bandit problem. arXiv
preprint arXiv:1801.03423.
Kotthoff, L.; Hurley, B.; and O’Sullivan, B. 2017. The ICON
Challenge on Algorithm Selection. AI Magazine 38(2):91–
93.
Kotthoff, L. 2013. Llama: leveraging learning to automati-
cally manage algorithms. arXiv preprint arXiv:1306.1031.

Kotthoff, L. 2014. Algorithm Selection for Combinatorial
Search Problems: A Survey. AI Magazine 35(3):48–60.
Lagoudakis, M. G., and Littman, M. L. 2000. Algorithm
selection using reinforcement learning. In ICML, 511–518.
Citeseer.
Lakshminarayanan, B.; Roy, D. M.; and Teh, Y. W. 2014.
Mondrian forests: Efficient online random forests. In Ad-
vances in neural information processing systems, 3140–
3148.
Lang, M.; Bischl, B.; and Surmann, D. 2017. batchtools:
Tools for r to work on batch systems. The Journal of Open
Source Software 2(10).
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, 661–670. ACM.
Liaw, A., and Wiener, M. 2002. Classification and regres-
sion by randomforest. R news 2(3):18–22.
Lindauer, M.; van Rijn, J. N.; and Kotthoff, L. 2017. Open
algorithm selection challenge 2017: Setup and scenarios. In
Proceedings of the Open Algorithm Selection Challenge, 1–
7.
Malitsky, Y.; Mehta, D.; and O’Sullivan, B. 2013. Evolving
Instance Specific Algorithm Configuration. In Symposium
on Combinatorial Search.
O’Mahony, E.; Hebrard, E.; Holland, A.; Nugent, C.; and
O’Sullivan, B. 2008. Using Case-based Reasoning in an
Algorithm Portfolio for Constraint Solving. In Proceedings
of the 19th Irish Conference on Artificial Intelligence and
Cognitive Science.
Phillips, M.; Narayanan, V.; Aine, S.; and Likhachev, M.
2015. Efficient search with an ensemble of heuristics. In
IJCAI, 784–791.
Rice, J. R. 1976. The algorithm selection problem. Ad-
vances in Computers 15:65–118.
Sexton, J., and Laake, P. 2009. Standard errors for bagged
and random forest estimators. Computational Statistics &
Data Analysis 53(3):801–811.
Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M.
2009. Gaussian process optimization in the bandit set-
ting: No regret and experimental design. arXiv preprint
arXiv:0912.3995.
Veerapen, N.; Maturana, J.; and Saubion, F. 2012. An
exploration-exploitation compromise-based adaptive opera-
tor selection for local search. In GECCO 14, 1277–1284.
ACM.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2008.
Satzilla: portfolio-based algorithm selection for sat. Journal
of Artificial Intelligence Research 32:565–606.

45




