
ar
X

iv
:1

50
4.

00
06

2v
2 

 [
cs

.C
E

] 
 8

 A
pr

 2
01

5

Top Tips to Make Your Research Irreproducible

Neil P. Chue Hong1, Tom Crick2, Ian P. Gent3, Lars Kotthoff4 and Kenji Takeda5

1Software Sustainability Institute, University of Edinburgh, UK
2Department of Computing & Information Systems, Cardiff Metropolitan University, UK

3School of Computer Science, University of St Andrews, UK
4Insight Centre for Data Analytics, University College Cork, Ireland

5Microsoft Research, Cambridge, UK
1n.chuehong@software.ac.uk http://www2.epcc.ed.ac.uk/~neilc/

2tcrick@cardiffmet.ac.uk http://drtomcrick.com/
3ian.gent@st-andrews.ac.uk http://ian.gent

4lars.kotthoff@insight-centre.org http://4c.ucc.ie/~larsko/
5kenji.takeda@microsoft.com

http://research.microsoft.com/en-us/people/kenjitak/

1 April 2015

We have noticed (and contributed to) a number of manifestos, guides and top tips on how to make
research reproducible [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; however, we have seen very little published on how to
make research irreproducible.

Irreproducibility is the default setting for all of science, and irreproducible research is particularly
common across the computational sciences. The study of making your work irreproducible without
reviewers complaining is a much neglected area; we feel therefore that by encapsulating some of our top
tips1 on irreproducibility, we will be filling a much-needed gap in the domain literature. By following our
starter tips, you can ensure that if your work is wrong, nobody will be able to check it; if it is correct,
you will make everyone else do disproportionately more work than you to build upon it. In either case
you are the beneficiary.

It is an unfortunate convention of science that research should pretend to be reproducible; our top
tips will help you salve the conscience of certain reviewers still bound by this fussy conventionality,
enabling them to enthusiastically recommend acceptance of your irreproducible work.

1. Think “Big Picture”. People are interested in the science, not the dull experimental setup, so
don’t describe it. If necessary, camouflage this absence with brief, high-level details of insignificant
aspects of your methodology.

2. Be abstract. Pseudo-code is a great way of communicating ideas quickly and clearly while
giving readers no chance to understand the subtle implementation details (particularly the custom
toolchains and manual interventions) that actually make it work.

3. Short and sweet. Any limitations of your methods or proofs will be obvious to the careful reader,
so there is no need to waste space on making them explicit2. However much work it takes colleagues
to fill in the gaps, you will still get the credit if you just say you have amazing experiments or
proofs (with a hat-tip to Pierre de Fermat: “Cuius rei demonstrationem mirabilem sane detexi
hanc marginis exiguitas non caperet.”).

4. The deficit model. You’re the expert in the domain, only you can define what algorithms and
data to run experiments with. In the unhappy circumstance that your methods do not do well on

1
N.B. We are by no means claiming this is an exhaustive list for making your research irreproducible...

2Space saved in this way can be used to cite the critical papers in the field, i.e. those papers that will inflate your own
(as well as potential reviewers’) h-index.

1

http://arxiv.org/abs/1504.00062v2
n.chuehong@software.ac.uk
http://www2.epcc.ed.ac.uk/~neilc/
tcrick@cardiffmet.ac.uk
http://drtomcrick.com/
ian.gent@st-andrews.ac.uk
http://ian.gent
lars.kotthoff@insight-centre.org
http://4c.ucc.ie/~larsko/
kenji.takeda@microsoft.com
http://research.microsoft.com/en-us/people/kenjitak/


community curated benchmarks, you should create your own bespoke benchmarks and use those
(and preferably not make them available to others).

5. Don’t share. Doing so only makes it easier for other people to scoop your research ideas, under-
stand how your code actually works3 instead of why you say it does, or worst of all to understand
that your code doesn’t actually work at all.

However, our most important tip is deceptively but beautifully simple: to ensure your work is

irreproducible, make sure that you cannot reproduce it yourself . If you were able to reproduce
it, there would always be the danger of somebody else being able to do exactly the same as you. Much
else follows from this; for example, complete confidence in your own inability to reproduce work saves
tedious time revising your work on advice from reviewers: if you are unable to browbeat the editor into
accepting it as is, you can always resubmit elsewhere. A major advantage of this key insight is that
no strict discipline is required to ensure self-irreproducibility: in our experience, irreproducibility can
happily occur after only the tiniest amount of carelessness at one of any number of stages.

We make a simple conjecture: an experiment that is irreproducible is exactly equivalent to

an experiment that was never carried out at all. The happy consequences of this conjecture for
experts in irreproducibility will be published elsewhere, with extremely impressive experimental support.

We close with a mantra for scientists interested in irreproducibility:

After Publishing Research, Irreproducibility Lets False Observations Obtain Longevity!

References

[1] Andreas Prlić and James B. Procter. Ten Simple Rules for the Open Development of Scientific
Software. PLoS Computational Biology, 12(8), 2012.

[2] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor, and Eivind Hovig. Ten Simple Rules for
Reproducible Computational Research. PLoS Computational Biology, 9(10), 2013.

[3] Ian P. Gent. The Recomputation Manifesto. Available from: http://arxiv.org/abs/1304.3674,
April 2013.

[4] Lucas N. Joppa, Greg McInerny, Richard Harper, Lara Salido, Kenji Takeda, Kenton O’Hara,
David Gavaghan, and Stephen Emmott. Troubling Trends in Scientific Software Use. Science,
340(6134):814–815, 2013.

[5] Ian P. Gent and Lars Kotthoff. Recomputation.org: Experience of its first year and lessons learned.
In Recomputability 2014, December 2014.

[6] Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T. Guy,
Steven H. D. Haddock, Kathryn D. Huff, Ian M. Mitchell, Mark D. Plumbley, Ben Waugh, Ethan P.
White, and Paul Wilson. Best Practices for Scientific Computing. PLoS Biology, 12(1), 2014.

[7] Carole Goble. Better Software, Better Research. IEEE Internet Computing, 18(5):4–8, 2014.

[8] Tom Crick, Benjamin A. Hall, and Samin Ishtiaq. “Can I Implement Your Algorithm?”: A Model
for Reproducible Research Software. In Proceedings of 2nd International Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE2), 2014.

[9] Tom Crick, Benjamin A. Hall, Samin Ishtiaq, and Kenji Takeda. “Share and Enjoy”: Publishing
Useful (and Usable) Scientific Models. In Proceedings of 1st International Workshop on Recom-
putability, 2014.

[10] Victoria Stodden and Sheila Miguez. Best Practices for Computational Science: Software Infras-
tructure and Environments for Reproducible and Extensible Research. Journal of Open Research
Software, 2(1):1–6, 2014.

3An exemplary example: http://www.phdcomics.com/comics.php?f=1689

2

http://arxiv.org/abs/1304.3674
http://www.phdcomics.com/comics.php?f=1689

