
An Automated Approach to Generating
Efficient Constraint Solvers

Dharini Balasubramaniam, Christopher Jefferson, Lars Kotthoff, Ian Miguel, Peter Nightingale
School of Computer Science,

University of St Andrews,
St Andrews, UK

{dharini,caj21,lk223,ijm,pwn1}@st-andrews.ac.uk

Abstract—Combinatorial problems appear in numerous set-
tings, from timetabling to industrial design. Constraint solving
aims to find solutions to such problems efficiently and automat-
ically. Current constraint solvers are monolithic in design, ac-
cepting a broad range of problems. The cost of this convenience
is a complex architecture, inhibiting efficiency, extensibility and
scalability. Solver components are also tightly coupled with
complex restrictions on their configuration, making automated
generation of solvers difficult.

We describe a novel, automated, model-driven approach to
generating efficient solvers tailored to individual problems and
present some results from applying the approach. The main
contribution of this work is a solver generation framework
called Dominion, which analyses a problem and, based on its
characteristics, generates a solver using components chosen
from a library. The key benefit of this approach is the ability to
solve larger and more difficult problems as a result of applying
finer-grained optimisations and using specialised techniques as
required.

Keywords-Generative programming; constraint solvers; soft-
ware architecture; model-driven development;

I. INTRODUCTION
Combinatorial problems appear in a wide variety of settings

that impact all of our lives – from institution timetabling and
factory scheduling to industrial and experimental design,
configuration and combinatorial mathematics. Constraint
solving offers a means by which solutions to such problems
can be found efficiently and automatically.
There are two phases to solving combinatorial problems

using constraint technology. In the first phase, the problem is
modelled as a set of decision variables and a set of constraints
on those variables that a solution must satisfy. A decision
variable represents a choice that must be made in order to
solve the problem. The domain of potential values associated
with each decision variable corresponds to the options for
that choice. In the case of timetabling, one might have two
decision variables per lecture, one representing its time and
the other its venue. The second phase uses a constraint
solver to find solutions to the model: assignments of values
to decision variables satisfying all constraints (e.g. a valid
timetable). Constraint solvers typically employ a systematic
backtracking search through the space of partial assignments
in order to find solutions.

A major challenge facing constraints research is to de-
liver constraint solving that scales easily to problems of
practical size. Current constraint solvers, such as Choco [1],
Eclipse [2], Gecode [3], Ilog Solver [4], or Minion [5] are
monolithic in design, accepting a broad range of models.
This convenience comes at the price of a necessarily complex
internal architecture, resulting in significant overheads and
inhibiting efficiency and scalability. Each solver may thus
incorporate a large number of features, many of which will
not be required for most constraint problems. The complexity
of current solvers also means that it is often prohibitively
difficult to incorporate new techniques as they appear in the
literature. A further drawback is that current solvers perform
little or no analysis of an input model and the features of
an individual model cannot be exploited to produce a more
efficient solving process.
To mitigate these drawbacks, constraint solvers often

allow manual tuning of the solving process. However, this
requires considerable expertise, preventing the widespread
adoption of constraints as a technique for solving the most
challenging combinatorial problems. The components of
a constraint solver are also usually tightly coupled, with
complex restrictions on how they may be linked together,
making automated generation of different solvers difficult.
In this paper, we describe the development and evaluation

of a novel and automated approach to improving the scalabil-
ity of constraint technology, while simultaneously removing
its reliance on manual tuning by an expert: a constraint
solver generator framework called Dominion that, for a given
problem, produces a solver tailored to that problem. There
are two key benefits in generating a solver from scratch:

1) it will enable fine-grained optimisations that are not
possible for a general solver, allowing the solution of
much larger, more difficult problems, and

2) it will enable the utilisation of many techniques in the
literature that, although effective in a limited number
of cases, are not suitable for general use, leading to
more powerful solvers.

These benefits lead to faster and more scalable solvers.
In addition, the automated approach simplifies the task of

modelling constraint problems by removing the need to
manually optimise specifications.
A few current solvers, such as the Minion solver mentioned

earlier, allow some specialisation. There are 7 variable types
in Minion and each constraint is compiled for two parameters,
each of which can be a different variable type. Each constraint
is therefore compiled 49 times. Adding one extra option to
variables (doubling the number of variable types) increases
compilation time fourfold. In contrast, Dominion compiles
only those variables and constraints that are required for each
problem.
In order to manage the complex dependencies on the

compatibility and configuration of components that constitute
a solver, we adopt a model-driven approach. The generation
process in Dominion is driven by the software architecture
of the target solver. Software architecture provides a high-
level model of a system in terms of its constituent elements
and their interactions as well as properties that have to hold
among the elements [6], [7]. The specified properties can be
checked for consistency at the architectural level as well as
against an implementation. Thus software architecture forms
a useful basis for the design, implementation and evolution of
systems. A brief outline of the implications of the Dominion
approach, in particular the complex dependencies of solver
components, on the specification of software architecture of
the solver is provided in [8].
As well as architecture-driven development, we utilise

concepts from generative programming, AI, domain-specific
software engineering and product-lines in the Dominion
approach. To achieve the goal of generating an efficient
constraint solver for a given problem, we begin by specifying
an architectural element (or component) corresponding to that
problem. An architecture of the solver is constructed from this
seed as a directed acyclic graph using pre-defined components
from a library that satisfy the properties required by existing
nodes in the graph. Thus, each new node represents a potential
variation point in the architecture. Each DAG thus produced
will model a valid solver but not necessarily an efficient
one. Established AI approaches are used to determine the
best option for each variation point. The chosen instantiation
forms the software architecture of the desired solver.
The paper is structured as follows. We use the N-Queens

problem, specified in Section II, throughout the paper
to illustrate the Dominion approach. The challenges of
automatically generating constraint solvers are discussed
in Section III. Section IV provides a brief overview of
the Grasp ADL used to represent the solver architecture
while Section V outlines the generative process. The unique
features of Dominion, which would be difficult to implement
in monolithic solvers, are discussed in Section VI. The
current status of the framework and results from evaluating
the performance of solvers generated by Dominion against
an existing solver are given in Section VII. Section VIII
describes other attempts to fully or partially generate problem-

specific solvers and differentiates them from our work. We
conclude the paper with some thoughts on further work in
Section IX.

II. AN EXAMPLE – N-QUEENS

N-Queens is the problem of placing n queens on an n×
n chessboard, such that no two queens attack each other.
It will be used in the remainder of the paper to illustrate
the Dominion approach to automating the generation of
specialised constraint solvers. It is also used, along with
other problems, to evaluate the performance of generated
solvers against existing work in Section VII.
Listing 1 shows the N-Queens problem expressed in the

Dominion Input Language (DIL) [9], which is a modelling
language that can express any constraint problem. In this
example, we observe that every row of the chessboard has
exactly one queen on it, and we represent the position of
that queen using a decision variable with domain {1 . . . n}.
Constraints are then added to rule out any pair of queens
attacking each other.
A constraint problem is expressed as a list of parameters

(given), decision variables (find), their domains and
finally a list of constraints and constraint comprehensions
that any solution must satisfy (following such that). A
constraint comprehension is a compact way of specifying
a set of parameterised constraints for a range of parameter
values.
A problem class (such as N-Queens) has a set of parame-

ters, specifying dimensions or other aspects of the problem.
In this case there is a single parameter n specifying the
dimensions of the chessboard (n × n) and the number of
queens to be placed on it. Before solving, all parameters are
substituted in to create a problem instance.
N-Queens has a one-dimensional matrix of decision vari-

ables named queens. The matrix is first dimensioned (with
the dim keyword). The explicit dimensioning is necessary
to allow for cases in which only some of the variables in
the matrix are used. This process can be compared to lazily
allocating memory in a programming language — if the
memory is not used, it is not actually allocated. Then a
find statement is used to insert decision variables into the
matrix. In this case all positions in the matrix have a decision
variable with domain 1..n.
Following the key words such that, each constraint or

comprehension is given a unique name in the DIL (in this
case, alldifferent, diagonals1 and diagonals2).
Constraints are specified as con(arg1, arg2, ...)
where con is one of a fixed, but extensible set of constraint
identifiers. Arguments may be matrices, single decision
variables or constants. Finally, constraints (like many other
structures in DIL) may be placed in a comprehension, as in
diagonals1 and diagonals2.
The first constraint in Listing 1 ensures that no two queens

are in the same column. It uses the alldiff constraint,

language Dominion 0.1
given n: int {3..}
dim queens[n]: int
find queens[..]: int {1..n}

such that

alldifferent alldiff(queens[..])
[diagonals1 sumneq([queens[j], j-i], queens[i]) | i in {0..n-2}, j in {i+1..n-1}]
[diagonals2 sumneq([queens[j], i-j], queens[i]) | i in {0..n-2}, j in {i+1..n-1}]

Listing 1. The N-Queens constraint problem

which ensures all variables in an array take different values.
The two constraint comprehensions ensure queens cannot
attack each other along the diagonals, by ensuring the
difference between the queens in columns i and j is neither
i− j or j − i. A DIL specification may contain references
to a subset of the 28 constraints supported by the language.

III. CHALLENGES FOR THE AUTOMATIC GENERATION OF
CONSTRAINT SOLVERS

A simple constraint solver is not a fundamentally complex
piece of software. The necessary components of a solver are:
a representation of variables; a representation of constraints;
a search engine that decides heuristically what decisions
to make; a propagation engine that allows constraints to
act on the consequences of those decisions; and a state
maintenance facility that allows changes as a result of
search and propagation, and reverses those changes on
backtracking. Each of these components can be implemented
simply: state maintenance, for example, can be as simple
as copying all data structures before changes are made
and then copying them back into place on backtracking.
Certain propagation engines may be algorithmically complex
to obtain optimal performance, but this need not be a problem
for the construction of solvers from components. Given the
apparent overall simplicity, we explain the major challenges
in automatically constructing an efficient constraint solver in
this section.
A vital input to the generation process is a specification

of a solver in terms of its constituent elements including
their structure, interactions and dependencies. This speci-
fication should provide adequate information for tools to
make decisions on correctness, compatibility as well as
efficiency. Software architectures are designed to capture
this information at an abstract level and hence provide a
reasonable basis for driving the process of solver generation.
However, a cluster of related issues contribute to the

architectural complexity of a fast constraint solver, all
driven by the need to optimise code for speed. First, there
is tight linkage between the implementation method for
each component and the services it then requires from
other components. Second, a constraint problem can require
thousands of variables and many constraints per variable.
There may be different optimal choices for different variable

or constraint components: thus we can either make a
compromise choice leading to suboptimal performance, or
allow for many different component types leading to greatly
increased architectural complexity. Third, apart from the
architectural issues in allowing multiple component types,
the multiple choices tend to lead to “monolithic” solvers, in
which a large number of choices are always available and
crucially lead to inefficiencies. These inefficiencies can be as
simple as much unnecessary code being in an executable, but
more important ones arise where time and memory are used
to maintain superfluous data structures which are needed only
to support component choices not currently being used. The
final issue is that the nature of constraint solving means that
the difference between optimal and suboptimal performance
can be critical. It is not unusual for the choice of search
strategy to affect performance exponentially. Even in areas
where no exponential speedup is available and an optimal
algorithm is already being used, implementation efficiencies
can make a difference in performance of thousands of times
to do exactly the same work. Therefore we cannot assume
that suboptimal performance is acceptable for the sake of
architectural simplicity.
To illustrate the issues that arise, consider just one of the

major components discussed earlier, the state maintenance
facility. As mentioned, it can be implemented very simply, but
this is unlikely to be optimal. In particular, naı̈vely copying
blocks of memory does not scale well as problems become
large. Therefore, it is natural to use ‘trailing’, where changes
are pushed onto a stack, and their effects undone in reverse
order when search backtracks. On the other hand, block-
copying is very fast indeed on modern machines, so such a
simple approach proved highly efficient when used on early
versions of Minion [5]. Which of these simple choices is
best varies from case to case. But there are other choices
available. One is recomputation [10], in which states are only
copied intermittently, with intermediate states recomputed
each time they are revisited. Another family of techniques
tries to avoid the need to restore state at all. A classic
example would be the use of “watched literals”, originating
in satisfiability solving [11] and later for constraint solving
[12]. With watched literals, while the data structure for a
constraint changes during propagation, it is still valid for
earlier states in the search tree. Therefore no state restoration

is necessary. Although it comes at the cost of losing a certain
kind of optimal behaviour, the tradeoff is worthwhile in many
cases.
The fact that there are many options for state maintenance

is not the major issue. It is that, to achieve good performance,
we might need to use a mixture of these techniques for
different parts of the constraint solver. For example, certain
kinds of constraint might work best with watched literals,
while other constraints would work best with trailing. Con-
straint problems often have many different types of variable,
constraint, and propagator, and so many different variants of
memory management might be appropriate within a solver for
one constraint problem. Therefore major complications arise
because of the interactions between different kinds of state
maintenance. For example, the speed advantage of watched
literals is negated if all memory associated with the constraint
is copied at each node. With memory management being
so fundamental, it is also easy to introduce bugs through
incorrect interactions between types of memory management.
In summary, we cannot produce constraint solvers with

a single simple architecture and retain acceptable perfor-
mance. The range of architectures we require for generating
constraint solvers has to cater for a number of alternative
implementations of the key components of a solver, for
different alternatives to be used within a single solver, and for
the complex interactions these choices allow to be managed
to produce a correct and efficient constraint solver. Thus,
an important requirement of an architecture description of
solvers is the ability to associate properties with components
and specify and check dependencies among them.

IV. REPRESENTING SOLVER ARCHITECTURES

The software architecture of the solver drives the gen-
eration process in Dominion and hence the architecture
specification must be sufficiently expressive to deal with
the complex requirements and dependencies described in
the previous section. In addition to customary details of
components and connections, the Dominion approach requires
further support from the architecture representation in order
to automate the process of producing an optimal architecture
from the problem specification, and the solver code from the
architecture.
A number of architecture description languages (ADLs)

have been defined over the years [13]. We use a general
purpose, textual ADL called Grasp [14] to represent solver ar-
chitectures. Grasp has been designed to capture the structure,
behaviour and rationale of systems at the architectural level. It
supports architectural primitives such as layers, components,
connectors, templates, interfaces, rationale, links, properties
and check clauses. Components and connectors are typically
the fundamental elements of a software architecture and
represent units of functionality and interaction. Layers are
logical structures used to promote modularity and flexibility
by enforcing separation of concerns. Each layer may only

communicate with the layers immediately above and below it.
Rationale captures the reasoning behind architectural design
decisions.
Templates are abstractions for architectural elements and

can be used to create instances of components and connectors
with shared behaviour. The required and provided interface
names allow tools to check the compatibility of linked ele-
ments and also aid the generation of solver architectures from
a problem component by matching required functionality.
Properties are characteristics (or restrictions of function-

ality) that are associated with architectural elements in the
form of name-value pairs. Check clauses allow properties
of parameters and linked elements to be checked for com-
patibility. In addition, Grasp provides a generic annotation
mechanism to associate meta-data with architectural elements.
This facility may be used for documentation purposes or to
supply information to tools. Dominion uses this mechanism
to specify the locations and file names of corresponding
implementations for architectural elements to aid automatic
generation. A number of standard functions are also supported
by Grasp so that tools can query the state of the architecture,
such as child elements of a composite component or support
for a certain interface by a component.
Listing 2 shows a sample template specification in Grasp:

@Dominion(Classname = "BoolVarFact")
@Dominion(Filename = "boolvar.hpp")
template BoolVariableFactory() {

provides IPropVariable;
provides IremoveFromDomain;
provides ItriggerOnDomain;
requires ITriggerContainerFactory tcf;
requires IMemoryManager mm;
check mm.getProperties() subsetof

[(MemoryChanges, ’Single’)];
property domainIs = "boolean";

}

Listing 2. A Template in Grasp

This template is for a factory that creates Boolean decision
variables, which implement the interface IPropVariable.
This template also implements the interfaces
IremoveFromDomain and ItriggerOnDomain.
These interfaces represent extensions to IPropVariable,
providing extra functionality. The template requires to be
connected to a component that implements the interface
IMemoryManager. The check statement states that the
memory manager is only allowed to have the property
(MemoryChanges, ‘Single’). The domainIs property
ensures the domain is boolean, that is the domain {0, 1}.
Other templates that implement IPropVariable impose
other restrictions, such as that the domain must be an
uninterrupted range, or must contain only 2 values. Being
able to provide both extensions (with provides) and
restrictions (with property) to a basic interface is vital to
compactly representing the components of constraint solvers.

The genericity and expressive power of Grasp make it
an ideal notation to capture the complexity of constraint
solvers and to perform consistency checks before solvers are
generated. The Grasp toolset currently consists of a compiler
and a checker. Further tools for visualising, designing and
validating architectures as well as performing traceability
analysis are planned for the language.

V. THE AUTOMATIC GENERATION OF CUSTOMISED
SOLVERS

As described in Section III, producing an efficient and
lean solver for a given constraint problem requires that only
those components that are required to solve the problem are
incorporated in the solver and that the most optimal combina-
tion of component implementations is used. The automated
generation process is driven by software architecture of the
target solver and contains the following steps as illustrated
in Figure 1:

• Problem component generation,
• Architecture generation and analysis,
• Solver generation, and
• Execution monitoring

��������
���������

��������
������

���������

���������
�������

�������
�������

���������
��������

����

���������
�����������

��������
����

�����

�������
���������

�������

���������
�������������

�������

���������
���������������

�����

������

�����

�������
������������

�������

Figure 1. The Generative Process for Creating Solvers

The overall process may be considered as a control
loop with the problem specification initiating feedforward
control and data on the execution of the solver resulting in
feedback control. C++ is used as the implementation language
for performance, modularity and backwards compatibility
reasons. The solver generation adopts component-based
software engineering practices as well as an architecture-
driven methodology. A component library is used throughout
the solver generation process and is introduced first. Inter-
esting aspects of the generation process are discussed in the
subsequent subsections.
The current solver generator implements feedforward

control, with a new problem initiating solver generation.
Some feedback control using execution monitoring and
analysis has been implemented as part of the tuning process
in the analyser.

A. Component Library

Components form the building blocks of Dominion con-
straint solvers. A large number (currently 275) of reusable
components are maintained in a library by the Dominion
framework to be used to assemble the specialised solver.
There are two aspects to the Dominion component library:
the specification of components in Grasp as elements at the
architectural level and the corresponding implementation of
these components at the code level. Listing 2 is an example of
the architecture level specification of a component template.
Each component is implemented as a C++ class, appropriately
templated and parameterised to allow customisation as
required.
A binding from Grasp to C++, which maps each Grasp

template to a C++ class, is used for all components. For
efficiency reasons, the mapping to C++ is performed statically
with templates, with the type of each requires clause
transformed into a template argument for the class, and
then the object itself passed into the object’s constructor.
Listing 3 shows an example class which implements the
Grasp template from Listing 2.

template<typename TrigConFactory,
typename MemoryManager>

struct BoolVarFact
{

BoolVarFact(TrigConFactory* tcf,
MemoryManager* mm)

{ ... }
};

Listing 3. A C++ binding for the Grasp in Listing 2

The exact C++ methods that should be provided for classes
providing a particular interface are described using C++
templates. Each class is stored in a separate file, promoting
flexibility of use and modularity. This decision also enables
the generation of the final solver to be automated in a
straightforward manner, making use of the class name and
file name annotations of architectural elements.

B. Problem Component Generation

The generative process is initiated by a constraint problem,
represented in the Dominion Input Language, being supplied
to the problem component generator tool. This tool parses the
DIL specification and generates a new component, providing
both C++ and Grasp versions, which captures the essence of
the problem such as the interfaces that should be supported
by variable and constraint components required to solve the
problem, and any restrictions, such as domain compatibility,
among them. Each problem component is unique to the
constraint problem to be solved and thus such components
are not stored in the component library for reuse. While this
component is generated specially for every class of Dominion
problems, once generated it is not treated differently from
any other Grasp component.

For the N-Queens problem from Listing 1, the problem
component generator will produce the Grasp specification
shown in Listing 4.
This problem component is linked to appropriate variable

and constraint components that support the specified inter-
faces and satisfy the given conditions. The check clauses
of a component can be divided into two parts. The first set
places restrictions on the variables based on the domains they
will have. In this case queens must have a bound domain.
Restrictions can be specified on the type and size of required
domain. Thus the choice of component for the variables is
restricted to those which implement the required domain.
The second part restricts the choice of implementation for

the constraints by checking each value we will give for each
parameter. The + operator creates a copy of a component
with added properties. In this case the (DomainType,
’bound’) property is added. We know in this particular
problem that the domain of each variable will be an unbroken
range, which we denote with domain type bound.
Regardless of the chosen implementation for queens,

which may or may not use this restriction, any variable
produced by queens will have an unbroken range as its
domain. The key point is that this allows implementations for
the constraints that require the bound property even when
the implementation for queens may not provide bound in
general.

C. Determining valid solvers

The process of generating valid solvers is complex and
difficult because of the restrictions on combining and
connecting components. Composing the components to form
a valid solver is a classic configuration problem. There are
several ways of solving configuration problems, one of which
is to encode it as a constraint satisfaction problem (see for
example [15]).
This approach usually requires extensions of the standard

constraint paradigm. We adopt a slightly different approach
that requires no such extensions to use the Minion constraint
solver unmodified to find a valid solver configuration. A
detailed description of the process that translates a Grasp prob-
lem specification and components database into a constraint
problem is beyond the scope of this paper; the interested
reader is referred to [16].
The result of this step is a valid, but not necessarily good

Dominion solver. One of the advantages of modelling the
configuration problem as a constraint problem and solving
it using Minion is that we have several means of guiding
the configuration process towards a Dominion solver that we
expect to perform well. Furthermore, we can generate several
valid solvers instead of just one and compare them. Note
that we are using Minion only as a tool here – we do not
require constraint technology to find valid Dominion solvers,
but we chose this way because it offers good performance
and flexibility.

D. Analyser

The work on the analyser tool is ongoing. It generates a
list of candidate solver architectures using the component
library with the problem component as the seed and selects
the best one using artificial intelligence techniques.
Each possible solver architecture produced by the analyser

will include component instantiations and configurations
(link statements). Each component instantiation makes use
of a component template from the library, with a format
similar to that shown in Listing 2.
The reader is referred to existing literature on algorithm

selection [17], [18] and algorithm portfolios [19] for more
details on possible techniques for use by the analyser.
In practice, the variable and constraint components required

by the problem component themselves will require other in-
terfaces, which leads to further components being instantiated.
Interface names are sufficient to match components at the
architectural level. Given either a partial or complete solver,
we can execute the check statements for each component
to ensure that dependencies hold and the solver is valid.
The architecture generated by the analyser is run through

the Grasp checker tool, which looks for potential inconsis-
tencies in the specification such as template and compo-
nent redefinitions, attempts to instantiate components from
undefined templates and incompatibilities in the source
(provides) and target (required) interfaces in configurations.
It also determines whether check clauses, such as properties
expected of connected components, hold.

E. Solver Generation

Finally, the architecture chosen by the analyser as optimal
for the input problem is passed to the solver generator to
create the target solver. This tool traverses the architecture
graph, using the location and file name information attached
to each element to find the corresponding component imple-
mentations in the component library. The main tasks of the
solver generator are to:

• include the component files required by the chosen
architecture

• instantiate the included components and parameters as
appropriate, and

• generate code to read run-time parameters, set-up and
begin the execution of the solver, which is denoted by
a component called main.

The translation from the Grasp architecture to a C++
implementation is straight-forward, given the component-
based design of the system, and the decisions made and
information recorded by other tools earlier in the process.

VI. DOMINION FEATURES

In this section we overview the current features of Domin-
ion which would be difficult, or impossible, to implement
using a monolithic constraint solver architecture.

@Dominion(Filename="../../models/queens.dominion.hpp")
@Dominion(Classname = "DominionProblemClassFactory")
template DominionProblem() {

provides IProblemClassFactory;
requires IConstraintStoreFactory csf;
requires IPropagatorFactory_alldiff alldifferent;
requires IPropagatorFactory_sumneq diagonals1;
requires IPropagatorFactory_sumneq diagonals2;
requires IDiscreteVarFactory queens;

check queens.getProperties() subsetof [(DomainType, ’bound’)];
check alldifferent.param(1) accepts (queens + [(DomainType, ’bound’)]);
check diagonals1.param(1) accepts (queens + [(DomainType, ’bound’)]);
check diagonals1.param(2) accepts (queens + [(DomainType, ’bound’)]);
check diagonals2.param(1) accepts (queens + [(DomainType, ’bound’)]);
check diagonals2.param(2) accepts (queens + [(DomainType, ’bound’)]);

}

Listing 4. Specification of the Problem Component

A. Mappers

Mappers [20] are a method of performing simple trans-
formations on variables, such as negation or addition of
a constant, for very low cost. These are used in Minion
and Gecode internally, for example to implement the Max
constraint by taking the Min constraint and negating all the
variables. Schulte et al. [20] show this is as efficient as
implementing a Max constraint directly. While mappers are a
very useful feature, they are not traditionally provided to users
because they cause an explosion in the number of types of
variables, and implementing them with a generic interface is
inefficient. As Dominion compiles each solver individually,
we do not have to compile all possible combinations of
mapper and variable types, but only those which are used in
a particular problem class. Therefore we provide mappers in
the Dominion Input Language.

B. Variable Implementations

Monolithic constraint solvers typically provide a very
limited set of variable types, or just one variable type. To
support many types, one must either sacrifice efficiency by
accessing variables through an interface with virtual functions,
or compile constraint propagators many times (for each
combination of types for its arguments). Minion uses the
second approach, but the number of variable types is limited
to 7, and constraints with more than two arguments are
not compiled for all possible combinations of types. Most
constraints are compiled 49 times (7 types for two arguments).
Gecode provides only two variable types. Dominion removes
the limitations on the number and diversity of variable types
by compiling propagators as needed.
For example, Minion provides a variable type named

bound that stores only the upper and lower bounds of the
domain. bound variables do not allow triggers on individual
domain elements (interface ItriggerOnDomain). This is
again an efficiency issue: without ItriggerOnDomain
updating a bound is an O(1) operation. Minion also provides

a variable type (discrete) that stores the whole domain ex-
plicitly in O(d) space, and supports ItriggerOnDomain.
In some cases we would want some features of bound and
others of discrete but we cannot have every possible
variable type.
In particular, in Minion all variable implementations

which support ItriggerOnDomain also take O(d) space
to store a domain. The current best propagator for dis-
junctions of constraints (by Jefferson et al [21]) requires
ItriggerOnDomain. We cannot use this in Minion on
variables with very large domains. In Dominion we can
construct the variable implementation with exactly the set of
features we require.

C. Heuristics

Heuristics for variable and value ordering can be used to
improve the efficiency of constraint solvers. For example, the
weighted degree variable ordering (WDEG) [22] has been
shown to be a good heuristic for a wide range of problems.
However not all heuristics are suitable for all problems
and there may be costs associated with using heuristics.
WDEG requires an extra data structure in every variable
and constraint. WDEG is not present in Minion because it
slows down the solver significantly even when it is not in
use. However in Dominion it is possible to add these data
structures only when required.

VII. EXPERIMENTS

In this section, we compare the performance of Minion
with solvers generated by the Dominion framework. The
solvers are compared by program size and execution time.
Experiments were run on an 8-core Intel Xeon E5430 server
with a clock speed of 2.66GHz.

A. Local Search Analyser

Section V-D described the role of the analyser. In this
section we describe an analyser based on local search, that
is used for the experiments presented below.

The approach taken is hill climbing in the space of
candidate solver specifications. Given a current state A, we
search the neighbourhood of A in a random order. As soon as
a state B where B is better than A is found, the hill climber
moves to state B immediately.
Section V-C describes the process of creating a valid

solver specification by solving a configuration problem using
the Minion solver. The hill climbing algorithm sits above
this, and adjusts the variable and value ordering used by
Minion to obtain different valid solver specifications. By
repeated changes to the variable and value ordering it is
possible to reach every valid solver specification. Some
changes to variable or value ordering will not affect the
solver specification found by Minion.
For each candidate specification, a solver is generated,

compiled and executed on a set of instances of the problem
class and its run time is measured for each instance (with a
time limit of 10 seconds). Solver A is considered better than
solver B iff A solved more instances, or A and B solved the
same number of instances and A used less time in total.
The hill climber begins at a random candidate specification

and terminates when it is no longer possible to improve the
specification. For efficiency a cache mapping solver specifi-
cations to run times was implemented to avoid generating
and running the same solver twice. We executed the hill
climber 10 times and took the best solver overall to compare
to Minion.

B. Modelling Problems in Dominion and Minion

The feature sets of Dominion and Minion do not ex-
actly match. To make the comparison we modelled each
of the problem classes for both solvers as closely as
possible, while still making best use of the constraints
available in each solver. In two cases it is not possible
for the models to exactly match. The sum constraint
present in Dominion is translated to sumleq and sumgeq
in Minion. The sumneq(X,y) constraint in Dominion
is translated to one new decision variable auxxy, and
the constraints sumleq(X,auxxy), sumgeq(X,auxxy)
and diseq(auxxy, y). sum arises in every model except
N-Queens. sumneq arises in N-Queens only.

C. Experimental Results

We used six problem classes, as follows.
• N-Queens The N-Queens problem, as described in
Section II.

• BIBD The Balanced Incomplete Block Design problem
(CSPLib problem 028 [23]).

• Golomb The problem of proving optimality of known
optimal Golomb Rulers (i.e. the solver searches for any
ruler that is shorter than the known one). Golomb Ruler
is described on CSPLib, problem 006 [23].

• Graceful The problem of finding graceful labellings of
graphs [24].

0.001 0.100 10.000 1000.000

0.001

0.100

10.000

1000.000

time [s]

Dominion

Minion

Dominion better

Minion better

BIBD
Golomb Ruler
Graceful Graph
Magic Square
NMR
N−Queens

Figure 2. Experimental results comparing Dominion to Minion. The
reported times are the median of three runs.

• NMR The problem of finding non-monochromatic
rectangles [25].

• MSquare The problem of finding magic squares,
CSPLib problem 019 [23].

The model and parameter files we used for these problems
and the corresponding solver architectures are available on
the Web.1 With the exception of Graceful, we search for only
one solution. For Graceful, we searched for all solutions.
For each problem class, we took a selection of parameter

settings and generated a Dominion solver using the analyser
described above. We then benchmarked the Dominion solver
against Minion. We used only instances where both solvers
could be run to completion within 1 hour.
Figure 2 plots the time taken (in seconds) by Dominion

against Minion on a log scale for both axes. Overall,
Dominion shows promising speed improvements. We make
comments about particular problem classes below.
Figure 3 plots memory use (in MiB) of Dominion against

Minion, again using log scales. We measured the peak
resident set size, which is the amount of physical memory
actually used by the program, including both data and the
program binary. Minion never used less than 35 MiB, and
on all problem instances Dominion used less memory than
Minion.
For each problem class, we ran the hill climbing analyser

10 times. For N-Queens, NMR and Graceful, each run
produced a solver that can solve at least one instance. For
Golomb and MSquare, 9 of the 10 runs produced a solver
that can solve at least one instance. However for BIBD only
4 of the 10 runs produced a solver that can solve at least
one instance.

1http://www.cs.st-andrews.ac.uk/˜pn/dominion-icse-problems.tgz

1 5 10 50 500 5000

1

5

10

50

100

500

1000

5000

memory [MiB]

Dominion

Minion

Dominion better

Minion better

BIBD
Golomb Ruler
Graceful Graph
Magic Square
NMR
N−Queens

Figure 3. Experimental results comparing Dominion to Minion. The
reported memory numbers are the median of three runs.

1) N-Queens and MSquare: For both these problems,
except for the two largest instances of N-Queens, the times
measured for the Dominion solver were zero. To plot these
on the log-scale graph, we used 4.9 ms (the timer resolution
is 10 ms therefore 4.9 ms would round down to 0). The
largest instance of N-Queens was solved by Dominion in
0.01 s and by Minion in 1459 s.
For both problem classes, Minion used between 35.6 MiB

and 37.0 MiB memory. Dominion however used between
3.5 MiB and 5.7 MiB memory.

2) BIBD: Dominion is consistently faster than Minion on
BIBDs, with greater performance gains as problem size is
increased. Dominion is over 100 times faster than Minion
on largest BIBD (7-3-80). Dominion also improves upon
Minion in memory use.

3) Golomb: For the largest instance of Golomb, Dominion
was slightly more than 2.5 times faster than Minion, and
Minion used over 6 times the memory. Other instances are
similar.

4) Graceful: The Graceful instances showed almost iden-
tical time performance, however Minion used more than 9
times the memory that Dominion used.

5) NMR: NMR is the only class where the Dominion
solver is slower than Minion. On the largest instance, Minion
is 1.51 times faster. Dominion is substantially more efficient
in terms of memory however, taking 760 MiB whereas
Minion takes 2909 MiB. The Dominion solver consistently
uses less memory on instances of NMR.

VIII. RELATED WORK

One of the earliest examples of a system that attempts to
generate constraint solvers tailored to a specific problem is
MULTI-TAC [26], which configures and compiles a constraint
solver for a specific set of problems. It is written in LISP and

performs ad-hoc customisation of a base constraint solver
limited to a few characteristics.
KIDS [27] is a more general system that also uses LISP

to synthesise efficient algorithms from an initial specification.
The approach is knowledge-based, i.e. the user supplies the
knowledge required to generate an efficient algorithm for the
specific problem. Refinements are limited to a number of
generic transformation operations. Our approach is more
general and, crucially, relies on almost no background
knowledge. Westfold and Smith [28] are closer to our
approach and use KIDS to synthesise efficient constraint
solvers. They rely on reformulation and specialisation of the
constraints however and do not consider the other components
of a solver. Srivastava and Kambhampati [29] use KIDS to
synthesise planners, but rely on explicit domain knowledge
to do so.
The EasySyn++ system [30] automatically generates

stochastic local search algorithms from a number of templated
components. Again the synthesis is limited to a number of
key components and does not encompass all aspects of the
solver. Aeon [31] is a similar system for the automated
generation of scheduling algorithms.
RT-Syn [32] uses simulated annealing to select the best

ones from a set of abstract data structures and algorithms
and synthesises a programme from the selected abstract
descriptions. First, all algorithms and data structures that meet
the requirements specified by the problem to solve are chosen.
Then RT-Syn analyses all candidates and greedily selects
the best one. The analysis is purely based on the abstract
representation. Our approach relies on empirical evidence
instead of belief about the actual performance and takes a
more systematic approach to finding the best implementation.
Cahill [33] builds a knowledge base to aid with the

construction of numerical algorithms from subcomponents.
He models dependencies between components, but relies
(at least partially) on knowledge input manually by human
experts and does not report any results demonstrating the
effectiveness of the system.
Brewer [34] builds statistical models to select data layout

and sorting algorithm for iterative partial differential equation
solvers. He also automatically tunes the parameters of the
selected algorithms. Our approach follows the same general
idea, but is not restricted to a small number of decisions and
takes dependencies of components into account. We select
implementations for every component that we have a choice
for and model the ramifications of that choice on the rest of
the software.
More recently, research has focused on tuning the param-

eters of existing solvers or selecting from among different
solvers in algorithm portfolios. An algorithm portfolio
contains algorithms that complement each other and the task
is to select the most suitable one for solving the problem
at hand [19]. One of the most prominent approaches is the
SATzilla system [35]. SATenstein [36] is a successful system

that automatically tunes parameters and generates solvers
based on the results of this tuning process. A system that
combines both approaches and generates a portfolio of tuned
algorithms is Hydra [37].
Such systems shift the focus from engineering efficient

solvers to tuning and selecting from among existing ones.
Software engineering techniques thus become less important
than machine learning techniques. Our approach is more
general. We retain an element of machine learning by
selecting the most efficient solver architecture, but in the
context of the automated generation of the solver from
scratch.
There are also systems that make use of components to

build efficient solvers, but do not accomplish this in an
automated fashion. Van Hentenryck and Michel [38] describe
how to generate efficient implementations from high-level
descriptions of local search procedures. They focus on the
high-level implementation choices and abstract from low-
level details. Schulte and Tack [39] describe how to generate
automatically variations of specific solver components.
To the best of our knowledge no previous approach to

formally specifying the architecture of specialised constraint
solvers exists.

IX. CONCLUSIONS AND FUTURE WORK

We have provided an outline of a novel, automated,
architecture-driven approach to generating constraint solvers
that are optimised for a given problem. In addition to con-
straint programming, techniques from a variety of disciplines
such as software architecture, learning, component-based
software engineering and domain-specific development are
combined in the Dominion framework to produce optimal
solvers. The generative approach is supported by Grasp,
an expressive ADL able to capture different types of
compatibility requirements among the components of a solver,
analysis techniques for choosing optimal components and a
modular implementation of these components.
In addition to efficiency, the Dominion framework also

improves usability compared to monolithic solvers. A DIL
programmer will require the same knowledge of constraints
needed to program in any other constraint modelling language
but the task is simpler in Dominion since the programmer
does not need to manually optimise the model.
Initial results from comparing solvers generated by Do-

minion with an existing solver are positive and indicate this
approach is promising. Dominion is in fact expected to make
bigger gains in the cases where there are many interdependent
decisions to be made from a large number of components,
where traditional solvers are limited by having to cater for
the generic problem.
The Dominion approach improves performance and scala-

bility of solving constraint problems as a result of:

• tuning the solver to characteristics of the problem

• making more informed choices by analysing the input
model

• specialising the solver by only incorporating required
components, and

• providing extra functionality that can be added easily
and used when required.

A number of avenues are open for further work. An
incremental approach will be adopted for refining the steps of
the generation process, particularly the analyser tool. Further
evaluation of the framework using constraint problems of
different types and sizes continues. The evaluation activity
will also continue to populate the component library.
The current Grasp checker performs some basic static

analysis on architecture specifications for compatibility
among linked elements. Work is ongoing on developing
a semantic model that will allow more sophisticated and
dynamic checks to be carried out. This work forms part of a
larger research agenda for controlling architecture erosion by
maintaining consistency and correctness between architecture
and implementation in the face of system evolution.
As shown in Fig 1, a feedback loop to tune solvers based

on data from their execution is to be incorporated into the
generation process. A number of design decisions need to be
made on capturing and representing adaptation policies and
thresholds for acceptable behaviour for the solver, which may
be unique to each problem. Given the architecture-driven
nature of the generative process, we plan to explore the
possibility of using Grasp to model this information.

ACKNOWLEDGMENT
This work is supported by the EPSRC grant ‘A Constraint

Solver Synthesiser’ (EP/H004092/1) and SICSA studentships.

REFERENCES

[1] Choco. [Online]. Available: http://choco.emn.fr/

[2] Eclipse. [Online]. Available: http://www.eclipse-clp.org/

[3] Gecode. [Online]. Available: http://www.gecode.org/

[4] Ilog solver. [Online]. Available:
http://www.ilog.com/products/cp/

[5] I. P. Gent, C. A. Jefferson, and I. Miguel, “MINION: A fast
scalable constraint solver,” in Proceedings of the Seventeenth
European Conference on Artificial Intelligence, 2006, pp. 98–
102.

[6] D. E. Perry and A. L. Wolf, “Foundations for the study of
software architecture,” ACM SIGSOFT Software Engineering
Notes, vol. 17, no. 4, pp. 40–52, 1992.

[7] M. Shaw and D. Garlan, Software Architecture: Perspective
of an Emerging Discipline. Prentice Hall, 1996.

[8] D. Balasubramaniam, L. de Silva, C. Jefferson, L. Kotthoff,
I. Miguel, and P. Nightingale, “Dominion: An architecture-
driven approach to generating efficient constraint solvers,” in
Proceedings of the 9th Working IEEE/IFIP Conference on
Software Architecture. IEEE, 2011, (To appear).

[9] I. P. Gent, C. Jefferson, L. Kotthoff, I. Miguel, and
P. Nightingale, “Specification of the dominion input
language version 0.1,” University of St Andrews, Tech.
Rep., 2009. [Online]. Available: http://www-circa.mcs.st-
and.ac.uk/Preprints/InLangSpec.pdf

[10] R. M. Reischuk, C. Schulte, P. J. Stuckey, and G. Tack,
“Maintaining state in propagation solvers,” in CP, 2009, pp.
692–706.

[11] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: Engineering an efficient SAT solver,” in
Proc. 39th Design Automation Conference (DAC 2001), 2001.

[12] I. Gent, C. Jefferson, and I. Miguel, “Watched literals for
constraint propagation in minion,” in Proc. CP 2006, 2006.

[13] N. Medvidovic and R. Taylor, “A classification and comparison
framework for software architecture description languages,”
IEEE Transactions on Software Engineering, vol. 26, no. 1,
pp. 70–93, 2000.

[14] D. Balasubramaniam and L. de Silva, “Grasp language
reference manual version 1.0,” University of St Andrews,
Tech. Rep., 2011. [Online]. Available: http://www.cs.st-
andrews.ac.uk/˜dharini/reports/GraspManual.pdf

[15] S. Mittal and B. Falkenhainer, “Dynamic constraint satisfaction
problems,” in AAAI, 1990, pp. 25–32.

[16] I. P. Gent, C. Jefferson, L. Kotthoff, and I. Miguel, “Modelling
constraint solver architecture design as a constraint problem,”
in Annual ERCIM Workshop on Constraint Solving and
Constraint Logic Programming, 2011.

[17] J. R. Rice, “The algorithm selection problem,” Advances in
Computers, vol. 15, pp. 65–118, 1976.

[18] E. Fink, “How to solve it automatically: Selection among
Problem-Solving methods,” in Proceedings of the Fourth
International Conference on Artificial Intelligence Planning
Systems. AAAI Press, 1998, pp. 128–136.

[19] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artif.
Intell., vol. 126, no. 1-2, pp. 43–62, 2001.

[20] C. Schulte and G. Tack, “Perfect derived propagators,”
in Fourteenth International Conference on Principles
and Practice of Constraint Programming, ser. Lecture
Notes in Computer Science, P. J. Stuckey, Ed., vol.
5202. Sydney, Australia: Springer-Verlag, Sep. 2008, pp.
571–575. [Online]. Available: http://www.ict.kth.se/ cschulte/-
paper.php?id=SchulteTack:CP:2008

[21] C. Jefferson, N. Moore, P. Nightingale, and K. E. Petrie,
“Implementing logical connectives in constraint programming,”
Artificial Intelligence, vol. 174, pp. 1407–1429, 2010.

[22] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, “Boosting
systematic search by weighting constraints,” in Proceedings
of the 16th European Conference on Artificial Intelligence
(ECAI 2004), 2004.

[23] B. Hnich, I. Miguel, I. P. Gent, and T. Walsh, “CSPLib: a
problem library for constraints,” http://csplib.org/.

[24] K. E. Petrie and B. M. Smith, “Symmetry breaking in graceful
graphs,” in Proceedings of 9th International Conference on
Principles and Practice of Constraint Programming (CP03),
2003, pp. 930–934.

[25] S. Fenner, W. Gasarch, C. Glover, and S. Purewal, “Rectangle
free coloring of grids,” arXiv, Tech. Rep. 1005.3750, 2010.
[Online]. Available: http://arxiv.org/abs/1005.3750

[26] S. Minton, “Automatically configuring constraint satisfaction
programs: A case study,” Constraints, vol. 1, pp. 7–43, 1996.

[27] D. R. Smith, “KIDS - a Knowledge-Based software develop-
ment system,” in Automating Software Design. MIT Press,
1990, pp. 483–514.

[28] S. J. Westfold and D. R. Smith, “Synthesis of efficient
constraint-satisfaction programs,” Knowl. Eng. Rev., vol. 16,
no. 1, pp. 69–84, 2001.

[29] B. Srivastava and S. Kambhampati, “Synthesizing customized
planners from specifications,” J. Artif. Int. Res., vol. 8, no. 1,
pp. 93–128, Mar. 1998.

[30] L. D. Gaspero and A. Schaerf, “EasySyn++: a tool for
automatic synthesis of stochastic local search algorithms,”
in Proceedings of the 2007 international conference on
Engineering stochastic local search algorithms: designing,
implementing and analyzing effective heuristics, 2007, pp.
177–181.

[31] J. N. Monette, Y. Deville, and P. van Hentenryck, “Aeon:
Synthesizing scheduling algorithms from High-Level mod-
els,” in Operations Research and Cyber-Infrastructure, J. W.
Chinneck, Ed., 2009, pp. 43–+.

[32] T. E. Smith and D. E. Setliff, “Knowledge-based constraint-
driven software synthesis,” in Knowledge-Based Software
Engineering Conference, 1992., Proceedings of the Seventh,
Sep. 1992, pp. 18–27.

[33] E. Cahill, “Knowledge-based algorithm construction for real-
world engineering PDEs,” Mathematics and Computers in
Simulation, vol. 36, no. 4-6, pp. 389–400, 1994.

[34] E. A. Brewer, “High-Level optimization via automated sta-
tistical modeling,” in Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP
’95, 1995, pp. 80–91.

[35] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “SATzilla:
portfolio-based algorithm selection for SAT,” J. Artif. Intell.
Res. (JAIR), vol. 32, pp. 565–606, 2008.

[36] A. R. KhudaBukhsh, L. Xu, H. H. Hoos, and K. Leyton-
Brown, “SATenstein: automatically building local search SAT
solvers from components,” in IJCAI’09, 2009, pp. 517–524.

[37] L. Xu, H. H. Hoos, and K. Leyton-Brown, “Hydra: Automati-
cally configuring algorithms for Portfolio-Based selection,” in
AAAI-10, 2010, pp. 210–216.

[38] P. V. Hentenryck and L. Michel, “Synthesis of constraint-based
local search algorithms from high-level models,” in AAAI-07.
AAAI Press, 2007, pp. 273–278.

[39] C. Schulte and G. Tack, “Perfect derived propagators,” in
CP’08, 2008, pp. 571–575.

