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1 Introduction

Constraint Programming (CP) is a powerful technique for
solving a wide range of combinatorial problems. However,
non-experts have difficulty in formulating the good con-
straint models of problems necessary for a constraint solver
to obtain solutions effectively. Hence, it is desirable to auto-
mate constraint modelling. Our approach, embodied in our
CONJURE system, is to refine constraint models from their
abstract specifications in our ESSENCE constraint specifi-
cation language. This allows the user to specify a problem
in terms of familiar concepts such as sets, functions and re-
lations, without making detailed modelling decisions.

This paper presents two improvements to CONJURE
that provide further progress towards the goal of fully
automated constraint modelling. The first “closes the
loop”, mapping solutions to constraint models back to the
ESSENCE specifications from which the models are refined.
This allows a user to work solely at the ESSENCE specifi-
cation level, rather than taking the models CONJURE pro-
duces, manually inputting them to a constraint solver, and
interpreting the results. The second is a heuristic to select
among the many possible models CONJURE can typically
produce from a given ESSENCE specification. As noted,
the model chosen has a significant impact on subsequent
solver performance and model selection is difficult for a
non-expert, so our model selection heuristic, although pre-
liminary, removes a significant burden from the user. To-
gether, these two advances enable us to provide a first com-
plete automated constraint modelling and solving toolkit.

2 Background

Solving a problem using CP proceeds in two steps. First,
the problem is modelled as a set of decision variables, and
a set of constraints on those variables that a solution must
satisfy. A decision variable represents a choice that must
be made in order to solve the problem. The domain of po-
tential values associated with each decision variable cor-
responds to the options for that choice. The second step
consists of using a constraint solver to find solutions to the
model: assignments of values to decision variables satisfy-
ing all constraints.

Typically, there are many possible models of a given
problem, and the model chosen has a substantial impact on
the subsequent performance of a constraint solver. Without
help, it is very difficult for a novice user to formulate an ef-
fective (or even correct) model of a given problem. This
is considered to be one of the key challenges facing the
field[7] and drives research in automated constraint mod-
elling. This challenge has received a considerable amount
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given k, n : int(1..)
letting D be domain int(1..n*k)
letting R be domain int(1..n)

find seq: function(total, surjective) D → R

such that
forAll m : R .
exists f : function (total, injective) int(1..k) → D .
(forAll i : D . i in range(f) ↔ i in preImage(seq,m))
/\
(forAll j : int(1..k-1) . f(j+1) - f(j) = m + 1)

Figure 1: ESSENCE Spec: Langford’s Number Problem

of attention in the literature recently[6], where a variety of
approaches have been taken to automate aspects of con-
straint modelling, including: machine learning, case-based
reasoning, theorem proving, automated transformation of
medium-level solver-independent constraint models[8, 5],
and refinement of abstract constraint specifications[3, 1] in
languages such as ESSENCE[2], and Zinc[4].

Our approach to this problem is to provide the user with
an abstract constraint specification language, ESSENCE, in
which a problem can be described above the level at which
modelling decisions are made. ESSENCE supports abstract
decision variables that correspond to familiar concepts such
as sets, multisets, functions and relations. Furthermore, it
supports the arbitrary nesting of these objects, such as sets
of sets of functions, which allows very concise problem
specification. An example is given in Figure 1.

Since existing constraint solvers do not support these ab-
stract decision variables directly, abstract constraint spec-
ifications must be refined into concrete constraint models.
In addition, once solutions are obtained to the refined mod-
els, they must be mapped back onto the original ESSENCE
specification for presentation to the user. This is the re-
sponsibility of the rest of our toolchain, which is described
below.

3 An Automated Constraint Modelling and Solving
Toolchain

Our toolchain is summarised in Figure 21. An ESSENCE
specification is input to our CONJURE system, which em-
ploys a system of rules to refine the specification into
a constraint model in the ESSENCE′ language, a solver-

1These tools are available for download.
CONJURE: http://conjure.cs.st-andrews.ac.uk
SAVILEROW: http://savilerow.cs.st-andrews.ac.uk
MINION: http://minion.sourceforge.net
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Figure 2: Our Automated Constraint Modelling Toolkit

independent constraint modelling language that is a subset
of ESSENCE. A constraint model typically describes a pa-
rameterised problem class. An instance of the class is ob-
tained for input to the constraint solver by giving values for
the parameters. ESSENCE provides the same facility, allow-
ing the specification of problem classes. The refinement of
problem specification and parameter values is separated in
our toolchain, as shown in the figure. This allows the user to
solve multiple instances from the same problem class while
only performing model refinement once.

The SAVILEROW system accepts an ESSENCE′ model
and corresponding parameter values. It instantiates the
model and transforms it into the input suitable for the MIN-
ION constraint solver (SAVILEROW is able to produce out-
put suitable for other constraint solvers, but this is beyond
the scope of this abstract). After MINION has solved the
problem instance, SAVILEROW translates the solution back
into ESSENCE′. CONJURE then translates the ESSENCE′

solution into a solution to the original ESSENCE problem
for presentation to the user.

CONJURE can generate multiple models for a given prob-
lem, and is able to produce all or a random selection of
them as required. Selecting a good model from the avail-
able candidates remains a challenging task. We have de-
veloped a simple heuristic, which works reasonably well in
practice. It works by always choosing the smallest candi-
date each time there are multiple alternative reformulations
during automated modelling. This decision is local, hence
it is subject to the usual pitfalls of local search techniques.
CONJURE can pick an alternative which is smaller at the
time of one transformation, but a later transformation can
cause a great increase in the size of the generated model.
Moreover, CP models that are smaller in size aren’t nec-
essarily better. Despite these shortcomings, the “smallest”
heuristic provides a starting point for further research on
model selection.

4 Case Study: Langford’s Problem

We use Langford’s Number Problem2 as an illustrative ex-
ample. The ESSENCE specification in Figure 1 uses a deci-
sion variable with a function domain to succinctly represent
the permutation in the problem. The domain of this func-
tion variable is further constrained by the use of attributes:
total and surjective. These attributes have similar meanings
to their meanings in discrete mathematics.

CONJURE can model this problem in several different
ways. One important source of variety is choosing a repre-
sentation for each abstract domain in the original problem
specification. For this example, either a one-dimensional
matrix containing integer decision variables, or a two-
dimensional matrix containing boolean decision variables
can be used to model the decision variable seq. Both op-
tions require posting additional constraints to satisfy the in-
variants required by the original domain. Furthermore, each
expression involving seq needs to be reformulated depend-
ing on this choice. The “smallest” heuristic will pick the
one-dimensional model because it generates a smaller do-
main and fewer additional constraints.

5 Future Work

We have given an overview of a complete automated con-
straint modelling and solving toolchain, which allows a
user to specify a problem, and receive solutions, in familiar
terms without having to make difficult constraint modelling
decisions. A principal item of future work is in develop-
ing more sophisticated methods of model selection, both
for individual models and to construct model portfolios to
be solved in a modern multi-core setting.
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2L(k, n) is problem the of ordering k sets of the numbers 1...n such
that for each pair of the number i is i places apart.
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