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Abstract

Under the hypothesis that NP has positive p-dimension, we prove that any approximation
algorithm A for MAX3SAT must satisfy at least one of the following:

1. For some δ > 0, A uses at least 2nδ

time.

2. For all ε > 0, A has performance ratio less than 7
8 + ε on an exponentially dense set of

satisfiable instances.

As a corollary, this solves one of Lutz and Mayordomo’s “Twelve Problems on Resource-Bounded
Measure” (1999).

1 Introduction

MAX3SAT is a well-studied optimization problem. Tight bounds on its polynomial-time approx-
imability are known:

1. There exists a polynomial-time 7
8 -approximation algorithm (Karloff and Zwick [5, 3]). 1

2. If P 6= NP, then for all ε > 0, there does not exist a polynomial-time (7
8 + ε)-approximation

algorithm (H̊astad [4]).

Recently there has been some investigation of approximating MAX3SAT in exponential time.
For example, for any ε ∈ (0, 1

8 ], Dantsin, Gavrilovich, Hirsch, and Konev [2] give a (7
8 + ε)-

approximation algorithm for MAX3SAT running in time 28εk where k is the number of clauses
in a formula.

Given these results, it is natural to ask for stronger lower bounds on computation time for
MAX3SAT approximation algorithms that have performance ratio greater than 7

8 . Such lower
bounds are not known to follow from the hypothesis P 6= NP. In this note we address this question
using a stronger hypothesis involving resource-bounded dimension.

∗This research was supported in part by National Science Foundation Grant 9988483.
1An algorithm with conjectured performance ratio 7

8
was given in [5], and this conjecture has since been proved

according to [3].
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About a decade ago, Lutz [6] presented resource-bounded measure as an analogue for classical
Lebesgue measure in complexity theory. Resource-bounded measure provides strong, reasonable hy-
potheses which seem to have more explanatory power than weaker, traditional complexity-theoretic
hypotheses. The hypothesis that NP does not have p-measure 0, µp(NP) 6= 0, implies P 6= NP and
is known to have many plausible consequences that are not known to follow from P 6= NP.

Resource-bounded dimension was recently introduced by Lutz [7] as an analogue of classical
Hausdorff dimension for complexity theory. Resource-bounded dimension refines resource-bounded
measure by providing a spectrum of weaker, but still strong, hypotheses. We will use the hypothesis
that NP has positive p-dimension, dimp(NP) > 0. This hypothesis is implied by µp(NP) 6= 0 and
implies P 6= NP.

Under the hypothesis dimp(NP) > 0, we give an exponential-time lower bound for approximat-
ing MAX3SAT beyond the known polynomial-time achievable ratio of 7

8 on all but a subexponentially-
dense set of satisfiable instances. Put another way, we prove:

If dimp(NP) > 0, then any approximation algorithm A for MAX3SAT must satisfy
at least one of the following:

1. For some δ > 0, A uses at least 2nδ
time.

2. For all ε > 0, A has performance ratio less than 7
8 + ε on an exponentially dense

set of satisfiable instances.

Lutz and Mayordomo asked whether the hypothesis µp(NP) 6= 0 implies an exponential-time
lower bound on approximation schemes for MAXSAT [8]. Our result gives a strong affirmative
answer to this question: we obtain a stronger conclusion from the weaker dimp(NP) > 0 hypoth-
esis. In fact, after we present the dimension result, we give an easy proposition that achieves an
exponential-time lower bound from a hypothesis even weaker than dimp(NP) > 0.

In section 2 we give our notation and basic definitions. Resource-bounded measure and dimen-
sion are briefly reviewed in section 3. Section 4 contains a dimension result used in proving our
main theorem. The main theorem is proved in section 5. Section 6 concludes by summarizing the
inapproximability results for MAX3SAT under strong hypotheses.

2 Preliminaries

The set of all finite binary strings is {0, 1}∗. We use the standard enumeration of binary strings
s0 = λ, s1 = 0, s2 = 1, s3 = 00, . . .. The length of a string x ∈ {0, 1}∗ is denoted by |x|.

All languages (decision problems) in this paper are encoded as subsets of {0, 1}∗. For a language
A ⊆ {0, 1}∗, we define A≤n = {x ∈ A

∣∣|x| ≤ n}. We write A[0..n − 1] for the n-bit prefix of the
characteristic sequence of A according to the standard enumeration of strings.

We say that a language A is (exponentially) dense if there is an α > 0 such that |A≤n| > 2nα

holds for all but finitely many n. We write DENSE for the class of all dense languages.
For any classes C and D of languages we define the classes

C ] D = {A ∪B |A ∈ C, B ∈ D}

and
Pm(C) =

{
A ⊆ {0, 1}∗

∣∣(∃B ∈ C)A ≤P
m B

}
.
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A real-valued function f : {0, 1}∗ → [0,∞) is polynomial-time computable if there exists a
polynomial-time computable function g : N× {0, 1}∗ → [0,∞) ∩Q such that

|f(x)− g(n, x)| ≤ 2−n

for all x ∈ {0, 1}∗ and n ∈ N where n is represented in unary.
For an instance x of 3SAT we write MAX3SAT(x) for the maximum fraction of clauses of x

that can be satisfied by a single assignment.
An approximation algorithm A for MAX3SAT outputs an assignment of the variables for each

instance of 3SAT. For each instance x we write A(x) for the fraction of clauses satisfied by the
assignment produced by A for x.

An approximation algorithm A has performance ratio α on x if A(x) ≥ α ·MAX3SAT(x). If A
has performance ratio α on all instances, then A is an α-approximation algorithm.

H̊astad proved the following in order to show that satisfiable instances of 3SAT cannot be
distinguished from instances x with MAX3SAT(x) < 7

8 + ε in polynomial-time unless P=NP.

Theorem 2.1 (H̊astad [4]) For each ε > 0, there exists a polynomial-time computable function fε

such that for all x ∈ {0, 1}∗,

x ∈ SAT ⇒ MAX3SAT(fε(x)) = 1
x 6∈ SAT ⇒ MAX3SAT(fε(x)) < 7

8 + ε.

We will use the functions fε from Theorem 2.1 later in the paper.

3 Resource-Bounded Measure and Dimension

In this section we review enough resource-bounded measure and dimension to present our result.
Full details of these theories are available in Lutz’s introductory papers [6, 7].

Definition 3.1 Let s ∈ [0,∞).

1. A function d : {0, 1}∗ → [0,∞) is an s-gale if for all w ∈ {0, 1}∗,

d(w) =
d(w0) + d(w1)

2s
.

2. A martingale is a 1-gale.

Intuitively, a gale is viewed as a function betting on an unknown binary sequence. If w is a
prefix of the sequence, then the capital of the gale after placing its first |w| bets is given by d(w).
Assuming that w is a prefix of the sequence, the gale places bets on w0 and w1 also being prefixes.
The parameter s determines the fairness of the betting; as s decreases the betting is less fair. The
goal of a gale is to bet successfully on languages.

Definition 3.2 Let s ∈ [0,∞) and let d be an s-gale.

1. We say d succeeds on a language A if

lim sup
n→∞

d(A[0..n− 1]) = ∞.
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2. The success set of d is

S∞[d] = {A ⊆ {0, 1}∗|d succeeds on A}.

Measure and dimension are defined in terms of succeeding martingales and gales, respectively.

Definition 3.3 Let C be a class of languages.

1. C has p-measure 0, written µp(C) = 0, if there exists a polynomial-time martingale d with
C ⊆ S∞[d].

2. The p-dimension of C is

dimp(C) = inf
{

s

∣∣∣∣ there exists a polynomial-time
s-gale d for which C ⊆ S∞[d]

}
.

For any class C, dimp(C) ∈ [0, 1]. We are interested in hypotheses on the p-dimension and
p-measure of NP. The following implications are easy to verify.

µp(NP) 6= 0 ⇒ dimp(NP) = 1
⇒ dimp(NP) > 0
⇒ P 6= NP.

The following simple lemma will be useful in proving our main result.

Lemma 3.4 Let C be a class of languages and c ∈ N.

(1) If µp(C) = 0, then µp(C ]DTIME(2cn)) = 0.

(2) dimp(C ]DTIME(2cn)) = dimp(C).

Proof: Let s ∈ [0, 1] be such that 2s is rational and assume that there is a polynomial-time
s-gale d succeeding on C. By the Exact Computation Lemma of [7], we may assume that d is
exactly computable in polynomial-time. It suffices to give a polynomial-time s-gale succeeding on
C ] DTIME(2cn). Let M0,M1, . . . be a standard enumeration of all Turing machines running in
time 2cn. Define for each i ∈ N and w ∈ {0, 1}∗,

di(w1) =


2sdi(w) if Mi accepts s|w|
d(w1)
d(w) di(w) if d(w) 6= 0

0 otherwise,
di(w0) = 2sdi(w)− di(w1),

where d(λ) = 1. Let d′ =
∑∞

i=0 2−idi. Then d′ is a polynomial-time computable s-gale. Let A ∈ C
and B = L(Mi) ∈ DTIME(2cn). Then for all n ∈ N, di((A∪B)[0..n−1]) ≥ d(A[0..n−1]). Because
A ∈ S∞[d], A ∪B ∈ S∞[di] ⊆ S∞[d′]. �
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4 Dimension of Pm(DENSEc)

Lutz and Mayordomo [9] proved that a superclass of Pm(DENSEc) has p-measure 0, so µp(Pm(DENSEc)) =
0. In this section we prove the stronger result that dimp(Pm(DENSEc)) = 0.

We use the binary entropy function H : [0, 1] → [0, 1] defined by

H(x) =
{
−x log x− (1− x) log(1− x) if x ∈ (0, 1)
0 if x ∈ {0, 1}.

Lemma 4.1 For all n ∈ N and 0 ≤ k ≤ n,(
n

k

)
≤ nn

kk(n− k)(n−k)
= 2H( k

n
)n.

Lemma 4.1 appears as an exercise in [1]. The following lemma is also easy to verify.

Lemma 4.2 For all ε ∈ (0, 1),
H(2(nε−n))2n = o(2εn).

We now show that only a p-dimension 0 set of languages are ≤P
m-reducible to non-dense lan-

guages.

Theorem 4.3
dimp(Pm(DENSEc)) = 0.

Proof: Let s > 0 be rational. It suffices to show that dimp(Pm(DENSEc)) ≤ s.
Let {(fm, εm)}m∈N be a standard enumeration of all pairs of polynomial-time computable func-

tions fm : {0, 1}∗ → {0, 1}∗ and rationals εm ∈ (0, 1). Define

Am,n =
{

u ∈ {0, 1}2n+1−1

∣∣∣∣ (∀i, j ≥ 2
n
2 )(fm(si) = fm(sj) ⇒ u[i] = u[j])

and |{fm(si)|i ≥ 2
n
2 and u[i] = 1}| ≤ 2nεm

}
.

For each string u with 2
n
2 ≤ |u| ≤ 2n+1 − 1, define the integers

collisionm,n(u) =
∣∣∣{(i, j)|2n

2 ≤ i < j < |u|, fm(si) = fm(sj), and u[i] 6= u[j]}
∣∣∣,

committedm,n(u) =
∣∣∣{fm(si)|2

n
2 ≤ i < |u| and u[i] = 1}

∣∣∣, and

freem,n(u) =
∣∣∣{fm(si)

∣∣ |u| ≤ i < 2n+1 − 1} − {fm(si)|2
n
2 ≤ i < |u|}

∣∣∣.
Then for each u with |u| ≥ 2

n
2 there are

countm,n(u) =


2nεm−committedm,n(u)∑

i=0

(freem,n(u)
i

)
if collisionm,n(u) = 0

0 otherwise

strings v for which uv ∈ Am,n.
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Define for each m,n ∈ N a function dm,n : {0, 1}∗ → [0,∞) by

dm,n(u) =


2(s−1)|u| if |u| < 2

n
2

countm,n(u)

countm,n(u[0..2
n
2 −1])

2s|u|−2
n
2 if 2

n
2 ≤ |u| ≤ 2n+1 − 1

2(s−1)(|u|−2n+1+1)d(u[0..2n+1 − 2]) otherwise.

Then each dm,n is a well-defined s-gale because countm,n(u) = countm,n(u0) + countm,n(u1) for all
u. Define a polynomial-time computable s-gale

d =
∞∑

m=0

2−m
∞∑

n=0

2−ndm,n.

Let A ≤P
m D ∈ DENSEc by a reduction f running in time nl. Let ε be a positive rational such

that for infinitely many n, |D≤nl | < 2nε
. Let m ∈ N be such that fm = f and εm = ε. Using

Lemmas 4.1 and 4.2, for each u ∈ {0, 1}2
n
2 , we have

countm,n(u) ≤
2nε∑
i=0

(|f({0,1}≤n)|
i

)
≤ (2nε

+ 1)
(2n+1−1

2nε

)
≤ (2nε

+ 1)2H(2nε−n)2n

≤ 22εn

≤ 2s2n−2
n
2 −2n

for all sufficiently large n. Whenever |D≤nl | < 2nε
, we have A[0..2n+1 − 2] ∈ Am,n. Therefore for

infinitely many n,

d(A[0..2n+1 − 2]) ≥ 2−(m+n)dm,n(A[0..2n+1 − 2])
= 2−(m+n) countm,n(A[0..2n+1−2])

countm,n(A[0..2
n
2 −1])

2s(2n+1−1)−2
n
2

≥ 2−(m+n) 2s(2n+1−1)−2
n
2

2s2n−2
n
2 −2n

≥ 2n−m.

Therefore A ∈ S∞[d]. This shows that Pm(DENSEc) ⊆ S∞[d], from which it follows that
dimp(Pm(DENSEc)) = 0. �

5 Main Theorem

Theorem 5.1 If dimp(NP) > 0, then for all ε > 0 there exists a δ > 0 such that any 2nδ
-time

approximation algorithm for MAX3SAT has performance ratio less than 7
8 + ε on a dense set of

satisfiable instances.

Proof: We prove the contrapositive. Let ε > 0 be rational. For any MAX3SAT approximation
algorithm A, define the set

FA =
{

x ∈ 3SAT
∣∣∣∣A(x) <

7
8

+ ε

}
.
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Assume that for each δ > 0, there exists a 2nδ
-time approximation algorithm Aδ for MAX3SAT with

FAδ
∈ DENSEc. By Theorem 4.3 and Lemma 3.4, it is sufficient to show that NP ⊆ Pm(DENSEc)]

DTIME(2n).
Let B ∈ NP and let r be a ≤P

m-reduction of B to SAT. Let nk be an almost-everywhere time
bound for computing fε ◦ r where fε is as in Theorem 2.1. Then

x ∈ B ⇐⇒ r(x) ∈ SAT
⇐⇒ MAX3SAT((fε ◦ r)(x)) = 1
⇐⇒ A 1

k
((fε ◦ r)(x)) ≥ 7

8 + ε or (fε ◦ r)(x) ∈ FA 1
k

.

Define the languages

C =
{

x

∣∣∣∣(fε ◦ r)(x) ∈ FA 1
k

}
and D =

{
x

∣∣∣∣A 1
k
((fε ◦ r)(x)) ≥ 7

8
+ ε

}
.

Then B = C ∪ D, C ≤P
m FA 1

k

∈ DENSEc, and D can be decided in time 2(nk)
1
k = 2n for all

sufficiently large n, so B ∈ Pm(DENSEc) ]DTIME(2n). �

Theorem 5.1 provides a strong positive answer to Problem 8 of Lutz and Mayordomo [8]:

Does µp(NP) 6= 0 imply an exponential lower bound on approximation schemes for
MAXSAT?

We observe that a weaker positive answer can be more easily obtained by using a simplified version
of our argument to prove the following result.

Proposition 5.2 If
NP 6⊆

⋂
α>0

DTIME
(
2nα)

,

then for all ε > 0 there exists a δ > 0 such that there does not exist a 2nδ
-time (7

8 +ε)-approximation
algorithm for MAX3SAT.

6 Conclusion

We close by summarizing the inapproximability results for MAX3SAT derivable from various strong
hypotheses in the following figure.

7



µp(NP) 6= 0
⇓

dimp(NP) > 0 ⇒
There exists a δ > 0 such that any 2nδ

-time
approximation algorithm for MAX3SAT has
performance ratio less than 7

8 + ε on a dense
set of satisfiable instances.

⇓ ⇓

NP 6⊆
⋂

α>0 DTIME
(
2nα)

⇒
There exists a δ > 0 such that no 2nδ

-
time

(
7
8 + ε

)
-approximation algorithm for

MAX3SAT exists.
⇓ ⇓

P 6= NP ⇒ No polynomial-time
(

7
8 + ε

)
-approximation

algorithm for MAX3SAT exists.

Acknowledgment I thank Jack Lutz for some helpful suggestions.
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