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Abstract

Under the hypothesis that NP has positive p-dimension, we prove that any approximation
algorithm A for MAX3SAT must satisfy at least one of the following:

1. For some § > 0, A uses at least 27" time.

2. For all € > 0, A has performance ratio less than % + € on an exponentially dense set of
satisfiable instances.

As a corollary, this solves one of Lutz and Mayordomo’s “Twelve Problems on Resource-Bounded
Measure” (1999).

1 Introduction

MAX3SAT is a well-studied optimization problem. Tight bounds on its polynomial-time approx-
imability are known:

1. There exists a polynomial-time %—approximation algorithm (Karloff and Zwick [5, 3]). !

2. If P # NP, then for all € > 0, there does not exist a polynomial-time (% + €)-approximation
algorithm (Hastad [4]).

Recently there has been some investigation of approximating MAX3SAT in exponential time.

For example, for any ¢ € (0, é], Dantsin, Gavrilovich, Hirsch, and Konev [2] give a (% + €)-
approximation algorithm for MAX3SAT running in time 28 where k is the number of clauses
in a formula.

Given these results, it is natural to ask for stronger lower bounds on computation time for

MAXS3SAT approximation algorithms that have performance ratio greater than %. Such lower

bounds are not known to follow from the hypothesis P = NP. In this note we address this question
using a stronger hypothesis involving resource-bounded dimension.

*This research was supported in part by National Science Foundation Grant 9983483.
! An algorithm with conjectured performance ratio % was given in [5], and this conjecture has since been proved
according to [3].



About a decade ago, Lutz [6] presented resource-bounded measure as an analogue for classical
Lebesgue measure in complexity theory. Resource-bounded measure provides strong, reasonable hy-
potheses which seem to have more explanatory power than weaker, traditional complexity-theoretic
hypotheses. The hypothesis that NP does not have p-measure 0, y,(NP) # 0, implies P # NP and
is known to have many plausible consequences that are not known to follow from P # NP.

Resource-bounded dimension was recently introduced by Lutz [7] as an analogue of classical
Hausdorff dimension for complexity theory. Resource-bounded dimension refines resource-bounded
measure by providing a spectrum of weaker, but still strong, hypotheses. We will use the hypothesis
that NP has positive p-dimension, dim,(NP) > 0. This hypothesis is implied by p,(NP) # 0 and
implies P # NP.

Under the hypothesis dim,(NP) > 0, we give an exponential-time lower bound for approximat-
ing MAX3SAT beyond the known polynomial-time achievable ratio of % on all but a subexponentially-
dense set of satisfiable instances. Put another way, we prove:

If dimp,(NP) > 0, then any approximation algorithm A for MAX3SAT must satisfy
at least one of the following:

1. For some d > 0, A uses at least 2"’ time.

2. For all € > 0, A has performance ratio less than % + € on an exponentially dense
set of satisfiable instances.

Lutz and Mayordomo asked whether the hypothesis p1,(NP) # 0 implies an exponential-time
lower bound on approximation schemes for MAXSAT [8]. Our result gives a strong affirmative
answer to this question: we obtain a stronger conclusion from the weaker dim,(NP) > 0 hypoth-
esis. In fact, after we present the dimension result, we give an easy proposition that achieves an
exponential-time lower bound from a hypothesis even weaker than dim,(NP) > 0.

In section 2 we give our notation and basic definitions. Resource-bounded measure and dimen-
sion are briefly reviewed in section 3. Section 4 contains a dimension result used in proving our
main theorem. The main theorem is proved in section 5. Section 6 concludes by summarizing the
inapproximability results for MAX3SAT under strong hypotheses.

2 Preliminaries

The set of all finite binary strings is {0,1}*. We use the standard enumeration of binary strings
S0 = A, 81 =0,82 = 1,83 =00,.... The length of a string = € {0,1}* is denoted by |z|.

All languages (decision problems) in this paper are encoded as subsets of {0, 1}*. For a language
A C {0,1}%, we define A<,, = {& € Al|lz| < n}. We write A[0..n — 1] for the n-bit prefix of the
characteristic sequence of A according to the standard enumeration of strings.

We say that a language A is (ezponentially) dense if there is an o > 0 such that |A<,| > 2"
holds for all but finitely many n. We write DENSE for the class of all dense languages.

For any classes C and D of languages we define the classes

CyD={AUB|AcC,BeD}

and
Pn(C)={AC{0,1}*|3B€C)A<;, B}.



A real-valued function f : {0,1}* — [0,00) is polynomial-time computable if there exists a
polynomial-time computable function g : N x {0,1}* — [0,00) N Q such that

[f(z) = g(n, z)| <27"

for all x € {0,1}* and n € N where n is represented in unary.

For an instance = of 3SAT we write MAX3SAT(x) for the maximum fraction of clauses of
that can be satisfied by a single assignment.

An approzimation algorithm A for MAX3SAT outputs an assignment of the variables for each
instance of 3SAT. For each instance = we write A(x) for the fraction of clauses satisfied by the
assignment produced by A for z.

An approximation algorithm .4 has performance ratio o on x if A(x) > - MAX3SAT(z). If A
has performance ratio « on all instances, then A is an «a-approximation algorithm.

Hastad proved the following in order to show that satisfiable instances of 3SAT cannot be
distinguished from instances x with MAX3SAT (z) < g + € in polynomial-time unless P=NP.

Theorem 2.1 (Hastad [4]) For each € > 0, there exists a polynomial-time computable function f,
such that for all x € {0,1}*,

x € SAT = MAX3SAT(f(x)) =1
z ¢ SAT = MAX3SAT(f.(z)) < & +e.

We will use the functions f. from Theorem 2.1 later in the paper.

3 Resource-Bounded Measure and Dimension

In this section we review enough resource-bounded measure and dimension to present our result.
Full details of these theories are available in Lutz’s introductory papers [6, 7].

Definition 3.1 Let s € [0, 00).
1. A function d : {0,1}* — [0,00) is an s-gale if for all w € {0,1}*,

d(w) = d(w0) ; d(wl).

2. A martingale is a I-gale.

Intuitively, a gale is viewed as a function betting on an unknown binary sequence. If w is a
prefix of the sequence, then the capital of the gale after placing its first |w| bets is given by d(w).
Assuming that w is a prefix of the sequence, the gale places bets on w0 and w1 also being prefixes.
The parameter s determines the fairness of the betting; as s decreases the betting is less fair. The
goal of a gale is to bet successfully on languages.

Definition 3.2 Let s € [0,00) and let d be an s-gale.
1. We say d succeeds on a language A if

limsup d(A[0..n — 1]) = oc.

n—oo



2. The success set of d is

S*d] = {A C {0,1}"|d succeeds on A}.

Measure and dimension are defined in terms of succeeding martingales and gales, respectively.

Definition 3.3 Let C be a class of languages.

1. C has p-measure 0, written p,(C) = 0, if there exists a polynomial-time martingale d with
C C S*™[d].

2. The p-dimension of C is

dimp,(C) = inf {S s-gale d for which C C S*°[d]

there exists a polynomial-time }

For any class C, dim,(C) € [0,1]. We are interested in hypotheses on the p-dimension and
p-measure of NP. The following implications are easy to verify.

pp(NP) #0 = dimp(NP) =1
= dim,(NP) >0
— P #NP.

The following simple lemma will be useful in proving our main result.

Lemma 3.4 Let C be a class of languages and ¢ € N.
(1) If up(C) =0, then puyp(C W DTIME(2")) = 0.
(2) dimp(C wDTIME(2")) = dim(C).

Proof: Let s € [0,1] be such that 2° is rational and assume that there is a polynomial-time
s-gale d succeeding on C. By the Exact Computation Lemma of [7], we may assume that d is
exactly computable in polynomial-time. It suffices to give a polynomial-time s-gale succeeding on
C & DTIME(2°"). Let My, Mi,... be a standard enumeration of all Turing machines running in
time 2°". Define for each i € N and w € {0, 1}*,

2%d;(w) if M; accepts s,
di(wl) = L;;gul)) di(w) if d(w) £0
0 otherwise,

where d(A\) = 1. Let d’ = 72,2 7"d;. Then d’ is a polynomial-time computable s-gale. Let A € C
and B = L(M;) € DTIME(2°"). Then for all n € N, d;((AU B)[0..n —1]) > d(A[0..n —1]). Because
A e S*®[d], AUB € S*[d;] C S*>°[d]. O



4 Dimension of P, (DENSE®)

Lutz and Mayordomo [9] proved that a superclass of Py, (DENSE€) has p-measure 0, so pp (P (DENSE®)) =
0. In this section we prove the stronger result that dim,(Py,(DENSE®)) = 0.
We use the binary entropy function H : [0, 1] — [0, 1] defined by

[ —zlogz — (1 —2)log(l —z) ifxe(0,1)
H@)_{() if z € {0,1}.

Lemma 4.1 For alln € N and 0 < k <n,

n n" k
< = 2MGn,
(&) = 7

Lemma 4.1 appears as an exercise in [1]. The following lemma is also easy to verify.

Lemma 4.2 For all € € (0,1),
H(2 )" = o(27).

We now show that only a p-dimension 0 set of languages are <P -reducible to non-dense lan-
guages.

Theorem 4.3
dimp(Pm(DENSEC)) =0.

Proof: Let s > 0 be rational. It suffices to show that dim,(P,(DENSE®)) <'s.
Let {(fm, €m) }men be a standard enumeration of all pairs of polynomial-time computable func-
tions fi, : {0,1}* — {0,1}" and rationals €., € (0, 1). Define

_ ity | (Viyj > 22)(fin(si) = fm(ss) = uli] = ulj))
Amn = {“ SO [(sli > 2% and ali] — 1] < 27 }

For each string u with 22 < |u| < 2"t — 1, define the integers

collision,, ,(u) = [{(4,7)22 <i <7 < |ul, fn(si) = fin(s;), and u[i] # u[y]}’,
committed,, n(u) = [{fm(5:)]22 <i < |u| and u[i] = 1}|, and
freemn(u) = |{fu(si)] [u] <i <20 =1} = {fin(s:)[25 <i < |u]}‘.

Then for each u with |u| > 22 there are

gnem —committedm,n (u)
countty, ,(u) = 12)
0 otherwise

(freemn (@)Y if collision,y, , () = 0

strings v for which uv € A, .



Define for each m,n € N a function d,, ,, : {0,1}* — [0, 00) by

2(s= Dl if [u] < 22

- countm, n (u) s\u|f2% ol < on+l _
() = o 0,25 1)) 2 if 2% < ful <2 1

20~ D(ul=2"" 1) g (y[0..27 1 — 2])  otherwise.

Then each d,, ,, is a well-defined s-gale because count,, ,(u) = count,, ,,(u0) + count,, ,(ul) for all
u. Define a polynomial-time computable s-gale

n=0

m=0

Let A <P D € DENSES by a reduction f running in time n!. Let € be a positive rational such
that for infinitely many n, |D,| < 2"°. Let m € N be such that f,, = f and €,, = ¢. Using

Lemmas 4.1 and 4.2, for each u € {0, 1}2%, we have

TLG

22 (o=

=0 2n+1 1
(2" +1)( one )
(2n€ + 1)27‘((2” —my2n
22671

count,y, , (u)
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VAN VAN VAN VAN
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for all sufficiently large n. Whenever [D_,i| < 2", we have A[0..2"™! — 2] € A,,,,. Therefore for
infinitely many n,

d(AJ0.271 —2]) > 2-(mng . (A[0..27F —2))
9—(m+n) countm,n(A[O..Q”:172])25(2n+1_1)_2%
county,,n (A[0..22 —1])
S g-(mimy2e@ D28
- 232"72%72n
> 2nfm.

Therefore A € S°*°[d]. This shows that P, (DENSE®) C S%|[d], from which it follows that
dimy (P, (DENSE®)) = 0. O

5 Main Theorem

Theorem 5.1 If dim,(NP) > 0, then for all € > 0 there exists a 6 > 0 such that any 2’ time
approximation algorithm for MAX3SAT has performance ratio less than % + € on a dense set of
satisfiable instances.

Proof: We prove the contrapositive. Let € > 0 be rational. For any MAX3SAT approximation
algorithm A, define the set

FA:{xGSSAT‘A(x)<;+e}.

6



Assume that for each § > 0, there exists a 2"’ _time approximation algorithm Ag for MAX3SAT with
F 4, € DENSE®. By Theorem 4.3 and Lemma 3.4, it is sufficient to show that NP C P,,,(DENSE®)w
DTIME(2").

Let B € NP and let r be a <P -reduction of B to SAT. Let n* be an almost-everywhere time
bound for computing f. o r where f, is as in Theorem 2.1. Then

r€B <= r(zx)€SAT
—  MAXSSAT((f. or)(z)) = 1
= A ((feor)a) 2 L+

Define the languages

7
C= {x (feor)(x) € Fa, } and D = {m A%((feor)(x)) > 8+6}.
3
1
Then B = CUD, C <P F4, € DENSE?, and D can be decided in time 2" = 27 for all
3
sufficiently large n, so B € P,,(DENSE®) & DTIME(2"). O

Theorem 5.1 provides a strong positive answer to Problem 8 of Lutz and Mayordomo [8]:

Does pp(NP) # 0 imply an exponential lower bound on approximation schemes for

MAXSAT?

We observe that a weaker positive answer can be more easily obtained by using a simplified version
of our argument to prove the following result.

Proposition 5.2 If
NP ¢ () DTIME (2"),
a>0

then for all € > 0 there exists a d > 0 such that there does not exist a 2" time (%Jre)—appmximation

algorithm for MAX3SAT.

6 Conclusion

We close by summarizing the inapproximability results for MAX3SAT derivable from various strong
hypotheses in the following figure.



11(NP) # 0

There exists a § > 0 such that any 2" _time
dim,(NP) > 0 —,. | approximation algorithm for MAX3SAT has
performance ratio less than % + € on a dense
set of satisfiable instances.

Y U

— There exists a 6 > 0 such that no 27'-
NP € (,-o DTIME (Zn ) = |time (% —|—e)—approximation algorithm for
MAX3SAT exists.

U I
o . z B . .
P £ NP N No Polynomlal—tlme (8 + e) approximation
algorithm for MAX3SAT exists.
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