
Fractal Dimension and Logarithmic Loss

Unpredictability∗

John M. Hitchcock
Department of Computer Science

Iowa State University
jhitchco@cs.iastate.edu

Abstract

We show that the Hausdorff dimension equals the logarithmic loss unpredictability for any
set of infinite sequences over a finite alphabet. Using computable, feasible, and finite-state
predictors, this equivalence also holds for the computable, feasible, and finite-state dimensions.
Combining this with recent results of Fortnow and Lutz (2002), we have a tight relationship
between prediction with respect to logarithmic loss and prediction with respect to absolute loss.

1 Introduction

We establish a fundamental relationship between logarithmic loss and Hausdorff dimension, central
ideas in two very active research areas. Hausdorff dimension [7] is a refinement of Lebesgue measure
that has become a powerful tool in fractal geometry [3]. Logarithmic loss (also known as self-
information loss) is very important in the theory of prediction. The survey by Merhav and Feder
on universal prediction [9] contains historical references and a thorough discussion of the motivation
and significance of logarithmic loss.

Given a set X of infinite sequences over a finite alphabet, consider the problem of designing a
single predictor that performs well on all sequences in X. Informally, we define the unpredictability
of X as the minimal average loss, with respect to a given loss function, that a predictor can achieve
on all members of X. (Our prediction model is standard. Technical definitions will be given in the
body of the paper.)

Relationships between prediction and Hausdorff dimension have been investigated by Fortnow
and Lutz [6], Ryabko [10, 11, 12], and Staiger [14]. In this note we show that unpredictability with
respect to logarithmic loss corresponds exactly to Hausdorff dimension. For any set X of sequences,
writing dimH(X) for the Hausdorff dimension of X and unpredlog(X) for the logarithmic loss
unpredictability of X, we prove that

dimH(X) = unpredlog(X). (1.1)

Fortnow and Lutz [6] defined the predictability of a set of sequences as the maximum “success”
achievable by any predictor on the set. This notion of predictability corresponds with absolute loss
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unpredictability. Specifically, if we denote the absolute loss unpredictability of X by unpredabs(X)
and the Fortnow-Lutz predictability of X by pred(X), we have

pred(X) = 1− unpredabs(X) (1.2)

for every set X.
For any set X of binary sequences, Fortnow and Lutz proved that

2(1− pred(X)) ≤ dimH(X) ≤ H(pred(X)), (1.3)

where H is the binary entropy function. Combining (1.1), (1.2), and (1.3), we have a relation-
ship between unpredictability with respect to absolute loss and unpredictability with respect to
logarithmic loss:

2 · unpredabs(X) ≤ unpredlog(X) ≤ H(unpredabs(X)) (1.4)

for any set X of binary sequences. Fortnow and Lutz also stated that the bounds in (1.3), and hence
in (1.4), are tight in a very strong sense. Using this result, for any α ∈ [0, 1

2 ] and β ∈ [2 · α,H(α)],
there is a set X of binary sequences with unpredabs(X) = α and unpredlog = β. (Fortnow and Lutz
also gave tight bounds for sequences over non-binary alphabets; in this introduction we only state
the binary case for simplicity.)

Our main result, that (1.1) holds for all sets X, is proved using Lutz’s characterization of
Hausdorff dimension by gales [8]. Lutz introduced gales, betting functions that are generalizations
of martingales, in order to effectivize Hausdorff dimension. Our proof of (1.1) makes use of a
natural correspondence between gales and predictors.

Lutz [8] used feasible (polynomial-time) and computable gales to define feasible and computable
dimensions. Subsequently, Dai, Lathrop, Lutz, and Mayordomo used gales induced by finite-state
gamblers to define finite-state dimension [2]. By using feasible, computable, and finite-state pre-
dictors, we can also define feasible, computable, and finite-state unpredictability. The results
mentioned in this introduction extend to the feasible, computable, and finite-state settings.

This note is organized as follows. We define gales and predictors in Section 2 and briefly review
the definitions of the Hausdorff, computable, feasible, and finite-state dimensions. In Section
3 we define unpredictability with respect to general loss functions and prove the equivalence of
logarithmic loss unpredictability and dimension. A full comparison of absolute loss and logarithmic
loss unpredictability via the work of Fortnow and Lutz [6] is given in Section 4.

2 Gales, Predictors, and Dimension

In this section we define gales and predictors and briefly review Hausdorff dimension, computable
dimension, feasible dimension, and finite-state dimension. The book by Falconer [3] is an excel-
lent reference on Hausdorff dimension. Further details on feasible and computable dimension are
available in Lutz’s introductory paper [8]. Finite-state dimension was introduced by Dai, Lathrop,
Lutz, and Mayordomo [2]. (The latter two references [2, 8] only address the binary alphabet but
are easily extended to arbitrary finite alphabets.)

Throughout the paper we let Σ be a k-symbol alphabet where 2 ≤ k < ∞. We write Σ∗ for
the set of all finite strings over Σ and Σ<n for the set of strings of length less than n. The empty
string is denoted by λ. The set of all infinite sequences over Σ is Σ∞. For a string or sequence
ω ∈ Σ∗ ∪ Σ∞, we write ω[0..n− 1] for the length n prefix of ω and ω[n] for the nth symbol of ω.
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For each n ∈ N, let An be the set of all prefix sets A ⊆ Σ∗ such that A ∩ Σ<n = ∅. (A is a
prefix set if no element of A is a prefix of another element of A.) For each X ⊆ Σ∞, s ∈ [0,∞),
and n ∈ N, we define

Hs
n(X) = inf

{ ∑
w∈A

k−s|w|

∣∣∣∣∣ A ∈ An and X ⊆
⋃

w∈A

w · Σ∞

}

and
Hs(X) = lim

n→∞
Hs

n(X).

Definition. The Hausdorff dimension of a set X ⊆ Σ∞ is

dimH(X) = inf {s ∈ [0,∞) |Hs(X) = 0} .

For each X ⊆ Σ∞, it holds that 0 ≤ dimH(X) ≤ 1.

2.1 Gales

Lutz [8] proved an alternative characterization of Hausdorff dimension using functions called gales.

Definition. Let s ∈ [0,∞). A function d : Σ∗ → [0,∞) is an s-gale if for all w ∈ {0, 1}∗,

d(w) = k−s
∑
a∈Σ

d(wa).

Intuitively, a gale is viewed as a function betting on an unknown sequence. If w is a prefix of the
sequence, then the capital of the gale after placing its first |w| bets is given by d(w). Assuming
that w is a prefix of the sequence, the gale places bets on wa also being a prefix for each a ∈ Σ.
The parameter s determines the fairness of the betting; as s decreases the betting is less fair. The
goal of a gale is to bet successfully on sequences.

Definition. Let s ∈ [0,∞) and let d be an s-gale.

1. We say d succeeds on a sequence S ∈ Σ∞ if

lim sup
n→∞

d(S[0..n− 1]) = ∞.

2. The success set of d is
S∞[d] = {S ∈ Σ∞|d succeeds on S}.

Theorem 2.1. (Lutz [8]) For any X ⊆ Σ∞,

dimH(X) = inf
{

s

∣∣∣∣ there exists an s-gale d
for which X ⊆ S∞[d]

}
.
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2.2 Predictors

Consider predicting the symbols of an unknown infinite sequence. Given an initial finite segment
of the sequence, a predictor specifies a probability distribution over Σ. We may think of the
probability that the algorithm assigns to each character as representing the predictor’s confidence
of that character occurring next in the sequence. Formally, we define a predictor as follows.

Definition. A function π : Σ∗ × Σ → [0, 1] is a predictor if for all w ∈ Σ∗,
∑

a∈Σ π(w, a) = 1.

Here we interpret π(w, a) as the predictor π’s estimation of the likelihood that the character im-
mediately following the string w is a. There is a natural correspondence between predictors and
gales. (An early reference for the following type of relationship between prediction and gambling
is [1].)

Notation. 1. A predictor π induces for each s ∈ [0,∞) an s-gale d
(s)
π defined by the recursion

d(s)
π (λ) = 1

d(s)
π (wa) = ksd(s)

π (w)π(w, a)

for all w ∈ Σ∗ and a ∈ Σ; equivalently

d(s)
π (w) = ks|w|

|w|−1∏
i=0

π(w[0..i− 1], w[i])

for all w ∈ Σ∗.

2. An s-gale d with d(λ) = 1 is induced by the predictor πd defined by

πd(w, a) =

{
k−s d(wa)

d(w) if d(w) 6= 0
1
k otherwise

for all w ∈ Σ∗ and a ∈ Σ.

2.3 Feasible and Computable Dimension

The characterization of Hausdorff dimension by gales motivated the following definitions of feasible
and computable dimensions. We say that a real-valued function f : Σ∗ → [0,∞) is computable if
there is a computable function f̂ : N × Σ∗ → [0,∞) ∩ Q satisfying |f̂(r, w) − f(w)| ≤ 2−r for all
w ∈ Σ∗ and r ∈ N. We say that f is feasible if there is a function f̂ approximating f in the same
way that is computable in time polynomial in |w|+ r.

Definition. Let X ⊆ Σ∞.

1. The feasible dimension of X is

dimp(X) = inf
{

s

∣∣∣∣ there exists a feasible
s-gale d for which X ⊆ S∞[d]

}
.
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2. The computable dimension of X is

dimcomp(X) = inf
{

s

∣∣∣∣ there exists a computable
s-gale d for which X ⊆ S∞[d]

}
.

We say that a function f : Σ∗ → [0,∞) ∩ Q is exactly feasible (or exactly computable) if f
itself is polynomial-time computable (or computable). The following result known as the Exact
Computation Lemma shows that feasible and computable dimension can be equivalently defined
using exactly feasible and exactly computable gales.

Lemma 2.2. (Lutz [8]) Let ks be rational.

1. For any feasible s-gale d there exists an exactly feasible s-gale d′ such that S∞[d] ⊆ S∞[d′].

2. For any computable s-gale d there exists an exactly computable s-gale d′ such that S∞[d] ⊆
S∞[d′].

The following observation is simple but useful.

Observation 2.3. 1. Let s be rational and π be a predictor. If π is feasible (or computable),
then d

(s)
π is feasible (or computable).

2. Let ks be rational and d be an s-gale. If d is exactly feasible (or exactly computable), then πd

is exactly feasible (or exactly computable).

2.4 Finite-State Dimension

Finite-state gamblers [4, 13] are used to define finite-state dimension.

Definition. A finite-state gambler (FSG) is a tuple G = (Q, δ, β, q0) where Q is a nonempty, finite
set of states, δ : Q×Σ → Q is the transition function, β : Q×Σ → Q∩ [0, 1] is the betting function,
and q0 ∈ Q is the initial state. The betting function satisfies

∑
a∈Σ β(q, a) = 1 for each q ∈ Q.

An FSG G = (Q, δ, β, q0) defines a predictor πG by

πG(w, a) = β(δ∗(w), a)

for all w ∈ Σ∗ and a ∈ Σ. Here δ∗ : Σ∗ → Q is the standard extension of δ to strings defined by
the recursion

δ∗(λ) = q0

δ∗(wa) = δ(δ∗(w), a).

We say that a predictor π is finite-state if π = πG for some FSG G and that an s-gale d is finite-state
if d = d

(s)
π for some finite-state predictor π. Note that πd is finite-state if d is finite-state.

Dai, Lathrop, Lutz, and Mayordomo [2] used finite-state gales to define finite-state dimension.

Definition. The finite-state dimension of a set X ⊆ Σ∞ is

dimFS(X) = inf
{

s

∣∣∣∣ there exists a finite-state
s-gale d for which X ⊆ S∞[d]

}
.
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(Note: In [2], finite-state dimension was defined using multi-account finite state gamblers, and the
above single-account definition was shown to be equivalent.)

From Theorem 2.1 and the definitions of the computable, feasible, and finite-state dimensions,
we observe that

0 ≤ dimH(X) ≤ dimcomp(X) ≤ dimp(X) ≤ dimFS(X) ≤ 1

for all X ⊆ Σ∞.

2.5 Unified Notation

We now introduce some unified notation to simplify the statement of our results. For this, we define
the following sets.

all = {all gales and predictors}
comp = {all computable gales and predictors}

p = {all feasible gales and predictors}
FS = {all finite-state gales and predictors}

For any ∆ ∈ {all, comp,p,FS} and X ⊆ Σ∞, we then define

dim∆(X) = inf
{

s

∣∣∣∣ there exists an s-gale d ∈ ∆
for which X ⊆ S∞[d]

}
.

Using this notation, dimall represents Hausdorff dimension. The notation for the computable,
feasible, and finite-state dimensions remains the same.

3 Unpredictability and Dimension

In this section we use a standard prediction model to define the unpredictability of sets of sequences
with respect to a loss function. Under the logarithmic loss we obtain an equivalent definition of
Hausdorff dimension.

In judging the performance of a predictor, it is instructive to consider its “loss” on individual
symbols of the sequence. One natural way to do this is to measure the absolute loss. If the
probability that the predictor assigned to the correct symbol is p, then we assign the absolute loss

lossabs : [0, 1] → [0, 1]

lossabs(p) = 1− p

to that prediction. That is, the loss is equal to the probability that the predictor did not assign to
the correct symbol. Another common, but more severe, measure of loss is the logarithmic loss

loss log : [0, 1] → [0,∞]

loss log(p) = logk

1
p
.

(Recall that k = |Σ|.) If p = 1, then both the absolute and logarithmic losses are 0. As p approaches
0, the logarithmic loss becomes infinite, while the absolute loss only goes to 1.
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The cumulative loss of a predictor on a finite string is the sum of the losses it incurs while
predicting the individual symbols. We now formally define this as well as the asymptotic loss rate
on infinite sequences and sets of sequences. Here lossτ may be absolute or logarithmic loss or any
other loss function.

Definition. Let π be a predictor and let lossτ : [0, 1] → [0,∞] be a loss function.

1. The τ -cumulative loss of π on a string w ∈ Σ∗ is

Lτ
π(w) =

|w|−1∑
i=0

lossτ (π(w[0..i− 1], w[i])).

2. The τ -loss rate of π on a sequence S ∈ Σ∞ is

Lτ
π(S) = lim inf

n→∞

Lτ
π(S[0..n− 1])

n
.

3. The τ -loss rate of π on a set X ⊆ Σ∞ is

Lτ
π(X) = sup

S∈X
Lτ

π(S).

The unpredictability of a set of sequences is defined as the infimum of the loss rates that a
predictor can guarantee on the set.

Definition. Let lossτ : [0, 1] → [0,∞] be a loss function and let ∆ ∈ {all, comp,p,FS}. For any
X ⊆ Σ∞, the ∆-τ -unpredictability of X is

unpredτ
∆(X) = inf{Lτ

π(X)|π is a predictor in ∆}.

Observe that

0 ≤ unpredlog
all (X) ≤ unpredlog

comp(X) ≤ unpredlog
p (X) ≤ unpredlog

FS(X) ≤ 1

and
0 ≤ unpredabs

all (X) ≤ unpredabs
comp(X) ≤ unpredabs

p (X) ≤ unpredabs
FS (X) ≤ k − 1

k

for all X ⊆ Σ∞. Here the upper bounds of 1 and k−1
k are witnessed by the predictor π defined by

π(w, a) = 1
k for all w ∈ Σ∗ and a ∈ Σ.

3.1 Logarithmic Loss and Dimension

We now show that logarithmic loss unpredictability equals dimension.

Theorem 3.1. For any X ⊆ Σ∞ and ∆ ∈ {all, comp,p,FS},

dim∆(X) = unpredlog
∆ (X).
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Proof. Let ks be rational and assume that d is an s-gale succeeding on X. Assume without loss of
generality that d(λ) = 1. Let πd : Σ∗ ×Σ → [0, 1] be the predictor inducing d as defined in Section
2. For any w ∈ Σ∗ with d(w) > 0,

Llog
πd

(w) =
|w|−1∑
i=0

logk

1
πd(w[0..i− 1], w[i])

= − logk

|w|−1∏
i=0

πd(w[0..i− 1], w[i])

= − logk k−s|w|d(w)
= s|w| − logk d(w).

Let S ∈ S∞[d]. Then there exist infinitely many n ∈ N such that d(S[0..n− 1]) ≥ 1, and for each
of these n we have

Llog
πd (S[0..n− 1])

n
=

sn− logk d(S[0..n− 1])
n

≤ sn− logk 1
n

= s.

Therefore Llog
πd (S) ≤ s, so this establishes that unpredlog

all (X) ≤ Llog
πd (X) ≤ s. If d is exactly

computable, then the predictor πd is exactly computable, so we have unpredlog
comp(X) ≤ Llog

πd (X) ≤ s.
Similarly, if d is exactly feasible or d is finite-state, we have unpredlog

p (X) ≤ s or unpredlog
FS(X) ≤ s.

For each ∆, we have established that unpredlog
∆ (X) ≤ s for all s > dim∆(X) such that ks ∈ Q. By

density of the set {s|ks ∈ Q}, it follows that unpredlog
∆ (X) ≤ dim∆(X) for each ∆.

Now let s > t be rational, and assume that π is a predictor for which Llog
π (X) < t. Let d

(s)
π be

the s-gale induced by π as defined in Section 2. Let S ∈ X. Then there exist infinitely many n ∈ N
such that

Llog
π (S[0..n− 1])

n
≤ t,

and for each of these n we have

logk d(s)
π (S[0..n− 1]) = sn +

n−1∑
i=0

logk π(w[0..i− 1], w[i])

= sn− Llog
π (S[0..n− 1])

≥ sn− tn

= (s− t)n,

so it follows that S ∈ S∞[d(s)
π ] and X ⊆ S∞[d(s)

π ]. Therefore, dimall(X) ≤ s. If π is feasible (or
computable or finite-state), then d

(s)
π is feasible (or computable or finite-state), so dimp(X) ≤ s

(or dimcomp(X) ≤ s or dimFS(X) ≤ s). For each ∆, we now have dim∆(X) ≤ s for all rational
s > unpredlog

∆ (X). By density of the rationals, we then have dim∆(X) ≤ unpredlog
∆ (X) for each

∆.
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4 Absolute Loss versus Logarithmic Loss

It is immediate from the definitions that the predictability of Fortnow and Lutz [6] has the following
relationship with absolute loss unpredictability.

Proposition 4.1. For any X ⊆ Σ∞ and ∆ ∈ {all, comp,p,FS},

pred∆(X) = 1− unpredabs
∆ (X).

(Fortnow and Lutz only defined pred∆ for the case ∆ = p. Their definition readily extends to the
other ∆.)

Fortnow and Lutz proved very tight bounds between predictability and dimension. (Feder,
Merhav, and Gutman [5] previously obtained related results about the finite-state predictability of
individual sequences.) To state their results we need the following technical definitions.

1. The k-adic segmented self-information function Ik : [ 1k , 1] → [0, 1] is defined by setting
Ik(1

j ) = logk j for 1 ≤ j ≤ k and interpolating linearly between these points.

2. The k-adic maximum entropy function Hk : [0, 1] → [0, 1] is defined by

Hk(α) = α logk

1
α

+ (1− α) logk

k − 1
1− α

.

Theorem 4.2. (Fortnow and Lutz [6]) For every set X ⊆ Σ∞ and ∆ ∈ {all, comp,p,FS},

Ik(pred∆(X)) ≤ dim∆(X) ≤ Hk(pred∆(X)).

(Fortnow and Lutz only presented Theorem 4.2 for the case ∆ = p. Their proof also works for
∆ ∈ {comp, all} and can be extended for the case ∆ = FS.)

Combining Theorem 3.1, Proposition 4.1, and Theorem 4.2, we have the following relationship
between absolute loss prediction and logarithmic loss prediction.

Theorem 4.3. For every set X ⊆ Σ∞ and ∆ ∈ {all, comp,p,FS},

Ik(1− unpredabs
∆ (X)) ≤ unpredlog

∆ (X) ≤ Hk(1− unpredabs
∆ (X)).

In particular, if Σ is the binary alphabet, then

2 · unpredabs
∆ (X) ≤ unpredlog

∆ (X) ≤ H(unpredabs
∆ (X)),

where H is the binary entropy function.

Furthermore, Fortnow and Lutz stated that the bounds in Theorem 4.2 are tight for the case
∆ = p in the strong sense that for any α ∈ [ 1k , 1] and β ∈ [Ik(α),Hk(α)], there is a set X ⊆ Σ∞

with pred∆(X) = α and dim∆(X) = β. This tightness result also holds for ∆ ∈ {comp, all}, and
holds for ∆ = FS with a dense subset of such α and β. For each ∆, it is immediate that the bounds
in Theorem 4.3 are tight in the same way.
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